Vol. 30, issue 12, article # 5

Tikhomirov B.A. Sorption of atmospheric gases (N2, O2, Ar, CO2, and H2O) by silica aerogel. // Optika Atmosfery i Okeana. 2017. V. 30. No. 12. P. 1027-1032 [in Russian].
Copy the reference to clipboard
Abstract:

Adsorption and desorption of atmospheric gases (N2, O2, Ar, CO2, and H2O) in silica aerogel is studied. Static parameters of adsorption and kinetic parameters of adsorption and desorption are determined based on pressure vs time dependence P(t) in the buffer vacuum chamber of the experimental setup during adsorption and desorption of gases by a SiO2 aerogel sample of V = 42.8 cm3 in volume and ρ = 0.34 g/cm3 in density. The ratios of adsorbate molecular density to aerogel molecular density at the room temperature T = 293 K and equilibrium pressure Pр ≈ 1 bar are found: γ(N2) = (9 ± 3)% (9 molecules of N2 adsorbed by pore surface to 100 N2 molecules in the gas at equilibrium), γ(O2) = (7 ± 3)%, and γ(CO2) = (222 ± 8)%; for water vapour, γH2O) = (5.9 ± 0.3) × 104% at the pressure Pр = 5.7 mbar. It is ascertained that argon atoms are not adsorbed by the aerogel. It is suggested to use argon as a “zero” gas in spectroscopy of molecules adsorbed by SiO2 aerogel to determine the amount of adsorbate in a sample. A sum of two exponents with kinetic parameters τ1 and τ2 is used to fit P(t) dependence. The τ1 and τ2 values are estimated during adsorption and desorption of each gas under study.

Keywords:

silica aerogel, atmospheric gases, adsorption and desorption

References:

  1. Antipov A.B. Optiko-akusticheskij metod v lazernoj spektroskopii: dis. … kand. fiz.-mat. nauk. Tomsk: Izd-vo IOA SO RAN, 1980. 179 p.
  2. Petrova T.M., Ponomarev Ju.N., Solodov A.A., Solodov A.M., Glazkova E.A., Bakina O.V., Lerner M.I. IK-spektry pogloshhenija CO2, C2H4, C2H6 v nanoporah SiO2/Al2O3-ajerogelja // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 380–385; Petrova T.M., Ponomarev Yu.N., Solodov A.M., Glazkova E.A., Bakina O.V., Lerner M.I. Infrared absorption spectra of CO2, C2H4, C2H6 in nanopores of SiO2/Al2O3 aerogel // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 404–409.
  3. Lugovskoj A.A., Osipov K.Ju., Tihomirov B.A. Sorbcija molekul vody nanoporami kremnievogo (SiO2) ajerogelja // Optika atmosf. i okeana. 2017. V. 30, N 2. P. 124–127.
  4. Tolmachev A.M. Opisanie adsorbcionnyh ravnovesij // Sorbcionnye i hromatograficheskie processy. 2009. V. 9, iss. 1. P. 5–32.
  5. Ageev B.G., Ponomarev Ju.N. Izmerenija koncentracii uglekislogo gaza v nanoporah dioksida kremnija // Optika atmosf. i okeana. 2012. V. 25, N 10. P. 909–912; Ageev B.G. Ponomarev Yu.N. Measurements of the carbon dioxide concentration in silicon dioxide nanopores // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 159–162.
  6. Zuev V.E., Komarov V.S. Sovremennye problemy atmosfernoj optiki. V. 1. Statisticheskie modeli temperatury i gazovyh komponent atmosfery. L.: Gidrometeoizdat, 1986. 264 p.
  7. Dubrovskij I.M., Egorov B.V., Rjaboshapka K.P. Spravochnik po fizike. Kiev: Nauk. dumka, 1986. 560 p.
  8. Duchko A., Dudaryonok A., Lugovskoi A., Serdyukov V., Tikhomirov B. The H2O absorption spectra in SiO2 airgel pores. Technical features of treatment // Proc. SPIE. 2016. V. 10035. P. 100350H-1–5.
  9. Nikiforov N.A. Adsorbcionnye metody v jekologii [Jelektronnyj resurs]. URL: ttp://elibrary.sgu.ru /uch_lit/174.pdf (data obrashhenija: 17.05.2017).
  10. Smirnov B.M. Ajerogeli // Uspehi fiz. nauk. 1987. V. 152, N 1. P 133–157.

Back