Vol. 30, issue 10, article # 1

Firsov K.M., Chesnokova T.Yu., Razmolov A.A., Chentsov A.V. Contribution of water vapour continual absorption to shortwave fluxes of solar radiation in the Earth’s atmosphere with cirrus cloudiness. // Optika Atmosfery i Okeana. 2017. V. 30. No. 10. P. 813–820 [in Russian].
Copy the reference to clipboard
Abstract:

The solar radiative fluxes in the cloudy and cloudless atmosphere are calculated taking into account multiple scattering and absorption. The cloudy conditions observed in Tomsk and Volgograd regions are considered. A comparison between the fluxes calculated with different water vapor continuum absorption models, such as the MT_CKD empirical model, commonly used in the atmospheric simulation, and the continuum model based on the CAVIAR experimental data, is carried out. The water vapor continuum impact on the shortwave radiative fluxes in the presence of different cloud types is estimated.

Keywords:

continual absorption, water vapour, shortwave radiative fluxes, cloudiness

References:

  1. Izmenenie klimata, 2014 year. Obobshhajushhij doklad. Vklad Rabochih grupp I, II i III v Pjatyj ocenochnyj doklad Mezhpravitel'stvennoj gruppy jekspertov po izmeneniju klimata. Zheneva: MGJeIK, 2014. 163 p.
  2. Loginov V.F. Radiacionnye faktory i dokazatel'naja baza sovremennyh izmenenij klimata. Minsk: Belarus. nauka, 2012. 266 p.
  3. Meleshko V.P., Gruza G.V., Zajcev A.S., Karol' I.L., Katcov V.M., Kobysheva N.V., Meshherskaja A.V., Mirvis V.M., Reshetnikov A.I., Sporyshev P.V., Akent'eva E.M., Alekseev G.V., Anisimov O.A., Aristova L.N., Bardin M.Ju., Bogdanova Je.G., Bulygina O.N., Georgievskij V.Ju., Govorkova V.A., Ivanov V.V., Il'in B.M., Kleshhenko L.K., Kljueva M.V., Kononova N.K., Malevskij-Malevich S.P., Mahotkina E.L., Meleshko V.I., Nadezhina E.D., Pavlova T.V., Paramonova N.N., Pokrovskij  O.M., Razuvaev V.N., Ran'kova Je.Ja., Rocheva Je.V., Svetlova T.P., Stadnik V.V., Hlebnikova E.I., Shajmardanov M.Z., Shalygin A.L., Shiklomanov I.A., Shkol'nik I.M., Shneerov B.E. Ocenochnyj doklad ob izmenenijah klimata i ih posledstvijah na territorii Rossijskoj Federacii. V. I. Izmenenija klimata. M.: Rosgidromet, 2008. 228 p.
  4. Stephens G.L., L'Ecuyer T. The Earth's energy balance // Atmos. Res. 2015. V. 166. P. 195–203.
  5. Firsov K.M., Chesnokova T.Yu., Bobrov E.V., Klitochenko I.I. Estimation of uncertainties in the longwave radiative fluxes simulation due to spectroscopic errors // Proc. SPIE. 2014. V. 9292. P. 929205. DOI: 10.1117/12.2075550.
  6. Chesnokova T.Ju., Klitochenko I.I., Firsov K.M. Vklad kontinual'nogo pogloshhenija N2O v potoki dlinnovolnovogo izluchenija oblachnoj i bezoblachnoj atmosfery // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 843–849.
  7. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.P., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. Р. D16305.
  8. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements // Phil. Trans. R. Soc. 2012. V. 370. P. 2557–2577.
  9. Rädel G., Shine K.P., Ptashnik I.V. Global radiative and climate effect of the water vapour continuum at visible and near-infrared wavelengths // Q. J. R. Meteorol. Soc. 2015. V. 141. P. 727–738. DOI: 10.1002/qj.2385.
  10. Chesnokova T.Ju., Zhuravleva T.B., Ptashnik I.V., Chencov A.V. Modelirovanie potokov solnechnogo izluchenija v atmosfere s ispol'zovaniem razlichnyh modelej kontinual'nogo pogloshhenija vodjanogo para v tipichnyh uslovijah Zapadnoj Sibiri // Optika atmosf. i okeana. 2013. V. 26, N 2. P. 100–107; Chеsnоkоvа Т.Yu., Zhurаvkеvа Т.B., Ptаshnik I.V., Chеntsоv А.V. Simulation of solar radiative fluxes in the atmosphere using different models of water vapor continuum absorption in typical conditions of Western Siberia // Atmos. Ocean. Opt. 2013. V. 26, N 6. P. 499–506.
  11. Paynter D., Ramaswamy V. Variations in water vapor continuum radiative transfer with atmospheric conditions // J. Geophys. Res. 2012. V. 117. P. D16310. DOI: 10.1029/2012JD017504.
  12. Stamnes K., Tsay S.-C., Wiscombe W., Jayaweera K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media // Appl. Opt. 1988. V. 27, iss. 12. P. 2502.
  13. NCEP/NCAR reanalysis [Electronic resource]. URL: http://www.esrl.noaa.gov/psd/data/reanalysis/ (last access: 20.06.2017).
  14. Komarov V.S., Lomakina N.Ja. Statisticheskie modeli pogranichnogo sloja atmosfery Zapadnoj Sibiri. Tomsk: IOA SO RAN, 2008. 222 p.
  15. MODIS Atmosphere: Monthly Global Product [Electronic resource]. URL: https://modis-atmos.gsfc.nasa.gov/MOD08_M3/ (last access: 6.06.2017).
  16. De  Leon R.R., Haigh J.D. Infrared properties of cirrus clouds in climate models // Q. J. R. Meteorol. Soc. 2007. V. 133. P. 273–282.
  17. Fu Q., Yang P., Sun W. An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models // J. Clim. 1998. V. 11. P. 2223–2237.
  18.  Kneizys F.X., Robertson D.C., Abreu L.W., Acharya P., Anderson G.P., Rothman L.S., Chetwynd J.H., Selby J.E.A., Shettle E.P., Gallery W.O., Berk A., Clough S.A., Bernstein L.S. The MODTRAN 2/3 Report and LOWTRAN 7 MODEL / L.W. Abreu, G.P. Anderson (eds.). North Andover, USA: Ontar Corporation, 1996. 261 p.
  19. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner D.C., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrink A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
  20. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.
  21. Bicknell W.E., Cecca S.D., Griffin M.K., Swartz S.D., Flusberg A. Search for low-absorption regions in the 1.6- and 2.1-mm atmospheric windows // J. Directed Energy. 2006. V. 2, N 2. P. 151–161.
  22. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 381–391.
  23. Ptashnik I.V. Kontinual'noe pogloshhenie vodjanogo para: kratkaja predystorija i sovremennoe sostojanie problemy // Optika atmosf. i okeana. 2015. V. 28, N 5. P. 443–459.
  24. Shine K.P., Campargue A., Mondelain D., McPheat R.A., Ptashnik I.V., Weidmann D. The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases // J. Mol. Spectrosc. 2016. V. 327. P. 193–208.
  25. Continuum model [Electronic resource]. URL: http://rtweb.aer.com/continuum_frame.html (last access: 17.06.2017).

Back