Vol. 30, issue 06, article # 13

Golubeva E. N., Malakhova V. V., Platov G. A., Kraineva M. V., Yakshina D. F. Dynamics and tendencies of the Laptev Sea hydrology and cryolitozone state in the 20th–21st centuries. // Optika Atmosfery i Okeana. 2017. V. 30. No. 06. P. 529–535. DOI: 10.15372/AOO20170613 [in Russian].
Copy the reference to clipboard

Abstract:

The variability of the Laptev Sea hydrodynamics is analyzed on the basis of the Arctic Ocean model developed in ICMMG SB RAS. Based on the numerical simulation, we explore possible reasons for the increase in the bottom layer temperature known from observations, including: a) redistribution of water masses over the shelf zone forced by atmospheric dynamics; b) Laptev sea on-shelf inflow of warm and saline waters of Atlantic Layer of the Arctic Ocean, and c) the redistribution of water mass temperature anomalies caused by the heat river flux. The effect of the increase in the bottom layer temperature of the coastal region on the enhancement of underwater permafrost degradation is studied. The upper boundary of the permafrost depth and the permafrost thawing rate are estimated for the modern climate conditions and under the forecasted Arctic climate changes in the 21st century.

Keywords:

Laptev Sea, water circulation, heat flux, East Siberian Shelf, cryolitozone, subsea permafrost

References:

   1. Gidrometeorologicheskie uslovija shel'fovoj zony morej SSSR. T. 11: More Laptevyh. L.: Gidrometeoizdat, 1986. 278 p.
   2. Zaharov V.F. Morskie l'dy v klimaticheskoj sisteme. SPb.: Gidrometeoizdat, 1996. 213 p.
   3. Dmitrenko I.A., Kirillov S.A., Tremblay L.B., Bauch D., Hölemann J.A., Krumpen T., Kassens H., Wegner C., Heinemann G., Schröder D. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography // J. Geophys. Res. 2010. V. 115. Р. C08010. DOI: 10.1029/2009JC006020.
   4. Rudels B., Schauer U., Björk G., Korhonen M., Pisarev S., Rabe B., Wisotzki A. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s // Ocean Sci. 2013. V. 9. P. 147–169. DOI: 10.5194/os-9-147-2013.
   5. Dmitrenko I.A., Kirillov S.A., Tremblay L.B., Kassens H., Anisimov O.A., Lavrov S.A., Razumov S.O., Grigoriev M.N. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability // J. Geophys. Res. 2011. V. 116. Р. C10027. DOI: 10.1029/2011JC007218.
   6. Rachold V., Bolshiyanov D.Y., Grigoriev M.N., Hubberten H.W., Junker R., Kunitsky V.V., Merker F., Overduin P.P., Schneider W. Nearshore Arctic subsea permafrost in transition // EOS. 2007. V. 88, N 13. P. 149–156.
   7. Malakhova V.V., Golubeva E.N. Modeling of the dynamics subsea permafrost in the East Siberian Arctic Shelf under the past and the future climate changes // Proc. SPIE. 2014. V. 9292. P. 92924D. DOI: 10.1117/12.2075137.
   8. Shakhova N.E., Semiletov I.P., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Gustafsson O. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice // Philos. Trans. R. S. A. 2015. V. 373, N 2052. P. 20140451. DOI: 10.1098/rsta.2014.0451.
   9. Climate Change 2013: The Physical Science Basis / T. Stoker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.). Cambridge; New York: Cambridge University Press, 2013. 1535 p.
10. Yeager S.G., Large W.G. CORE.2 Global Air-Sea Flux Dataset. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. [Электронный ресурс]. URL: http://dx.doi.org/10.5065/D6WH2N0S. (дата обращения 11.01.2016).
11. Lawrence Livermore National Laboratory (LLNL ESGF). [Электронный ресурс]. URL: https://pcmdi.llnl.gov/projects/esgf-llnl/ (дата обращения 17.03.2016).
12. Golubeva E.N., Platov G.A. On improving the simulation of Atlantic Water circulation in the Arctic Ocean // J. Geophys. Res. 2007. V. 112. Р. C04S05. DOI: 10.1029/2006JC003734.
13. Golubeva E.N. Chislennoe modelirovanie dinamiki atlanticheskih vod v Arkticheskom bassejne s ispol'zovaniem shemy QUICKEST // Vychisl. tehnol. 2008. V. 13, N 5. P. 11–24.
14. Platov G.A. Chislennoe modelirovanie formirovanija glubinnyh vod Severnogo Ledovitogo okeana. Part II: Rezul'taty regional'nogo i global'nogo modelirovanija // Izv. AN. Fiz. atmosf. i okeana. 2011. V. 47, N 2. P. 409–425.
15. Hunke E.C., Dukowicz J.K. An elastic-viscous-plastic model for ice dynamics // J. Phys. Oceanogr. 1997. V. 27, N 9. P. 1849–1867.
16. Golubeva E.N., Platov G.A. Chislennoe modelirovanie otklika Arkticheskoj sistemy «okean–led» na variacii atmosfernoj cirkuljacii 1948–2007 gg. // Izv. AN. Fiz. atmosf. i okeana. 2009. V. 45, N 1. P. 145–160. DOI: 10.1134/S0001433809010095.
17. Dmitrenko I., Kirillov S., Eicken H., Markova N. Wind driven summer surface hydrography of the eastern Siberian shelf // Geophys. Res. Lett. 2005. V. 32. Р. L14613. DOI: 10.1029/2005GL023022.
18. Golubeva E.N., Platov G.A., Jakshina D.F. Chislennoe modelirovanie sovremennogo sostojanija vod i morskogo l'da Severnogo Ledovitogo okeana // Led i sneg. 2015. V. 55, N 2. P. 81–92.
19. Golubeva E., Platov G., Malakhova V., Iakshina D., Kraineva M. Modeling the impact of the Lena River on the Laptev Sea summer hydrography and submarine permafrost state // Bull. Nov. Comp. Center. Num. Model. Atmos., etc. 2015. N 15. P. 13–22.
20. Eliseev A.V., Malahova V.V., Arzhanov M.M., Golubeva E.N., Denisov S.N., Mohov I.I. Izmenenie granic mnogoletnemerzlogo sloja i zony stabil'nosti gidratov metana na Arkticheskom shel'fe Evrazii v 1950–2100 years. // Dokl. AN. 2015. V. 465, N 5. P. 598–603.
21. Malahova V.V., Golubeva E.N. Ocenka ustojchivosti sostojanija merzloty na shel'fe Vostochnoj Arktiki pri jekstremal'nom scenarii poteplenija v XXI v. // Led i sneg. 2016. V. 56, N 1. P. 61–72. DOI: 10.15356/2076-6734-2016-1-61-72.
22. Razumov S.O., Spektor V.B., Grigor'ev  M.N. Model' pozdnekajnozojskoj jevoljucii kriolitozony shel'fa zapadnoj chasti morja Laptevyh // Okeanologija. 2014. V. 54, N 5. P. 679–693.