Vol. 30, issue 05, article # 2

Tarasenkov M. V., Belov V. V., Poznaharev E. S. Simulation of information transfer through atmospheric channels of scattered laser radiation propagation. // Optika Atmosfery i Okeana. 2017. V. 30. No. 05. P. 371–376. DOI: 10.15372/AOO20170502 [in Russian].
Copy the reference to clipboard

Abstract:

Results of simulation of the impulse response of an atmospheric optical communication channel on scattered radiation at wavelengths of 0.3, 0.5, and 0.9 μm are considered. Our analysis shows that the maximal power of the received information-bearing signal is attained at λ= 0.3 μm for base distances between the source and the receiving system of 2–3 km and shorter. For larger base distances and low atmospheric turbidity, the maximum is attained at λ= 0.5 μm. When the atmospheric turbidity is high and the base distances are 3–10 km, the maximal power is observed at λ= 0.5 μm. However, when the base distances exceed 10 km, the maximal power of information-bearing signal is attained at λ = 0.9 μm. For a particular example of laser source and receiver system, the limiting base distance between the source  and the receiver and the limiting pulse repetition frequency which is not filtered out by the communication channel are estimated using the results of calculations of the impulse response of the atmospheric communication channel at λ = 0.5 μm.

Keywords:

atmosphere, scattered laser radiation, bistatic optical communication, visible, UV, and near-IR wavelength regions, limiting base distances, limiting pulse repetition frequency

References:

  1. Voroncov M.A., Dudorov V.V., Zyrjanova M.O., Kolosov V.V., Filimonov G.A. Chastota pojavlenija oshibochnyh bitov v sistemah besprovodnoj opticheskoj svjazi s chastichno kogerentnym peredajushhim puchkom // Optika atmosf. i okeana. 2012. V. 25, N 11. P. 936–940; Vorontsov М.А., Dudorov V.V., Zyryanova M.O., Kolosov V.V., Filimonov G.A. Bit error rate in free-space optical communication systems with a partially coherent transmitting beam // Atmos. Ocean. Opt. 2013. V. 26, N 3. P. 185–189.
  2. Poljanskij S.V., Ignatov A.N. Opredelenie distancii atmosfernogo kanala svjazi s zadannym kojefficientom gotovnosti dlja g. Novosibirska // Vest. SibGUTI. 2009. N 4. P. 73–82.
  3. Poller B.V., Britvin A.V., Borisov B.D., Kolomnikov Ju.D., Konjaev S.I., Kusakina A.E., Shergunova N.A., Kurochkin V.L., Zverev  A.V., Kurochkin Ju.V., Pljusin V.F. Harakteristiki jenergoinformacionnoj modeli i metodov postroenija telekommunikacionnoj i kvantovo-kriptograficheskoj lazernoj sistemy sputnikovoj svjazi // Problemy informatiki. 2013. N 1 (18). P. 69–75.
  4.  Kennedi R.S. Vvedenie v teoriju peredachi soobshhenij po opticheskim kanalam s rassejaniem // Tr. in-ta inzhenerov po jelektroteh. i radiojelektron. 1970. V. 58, N 10. P. 264–278.
  5. Pozhidaev V.N. Vybor dliny volny dlja sistem zagorizontnoj svjazi v opticheskom diapazone // Radiotehn. i jelektron. 1977. V. 22, N 11. P. 2265–2271.
  6. Pozhidaev V.N. Osushhestvimost' linij svjazi ul'trafioletovogo diapazona, osnovannyh na jeffekte molekuljarnogo i ajerozol'nogo rassejanija v atmosfere // Radiotehn. i jelektron. 1977. V. 22, N 10. P. 2190–2192.
  7. Haipeng D., Chen G., Arun K., Sadler B.M., Xu Z. Modeling of non-line-of-sight ultraviolet scattering channels for communication // IEEE J. Sel. Areas Commun. 2009. V. 27, N 9. P. 1535–1544.
  8. Han D., Liu Y., Zhang K., Luo P., Zhang M. Theoretical and experimental research on diversity reception technology in NLOS UV communication system // Opt. Express. 2012. V. 20, N 14. P. 15833–15842.
  9. Elshimy M.A., Hranilovic S. Non-line-of-sight single-scatter propagation model for noncoplanar geometries // J. Opt. Soc. Am. A. 2011. V. 28, N 3. P. 420–428.
  10. Kedar D. Multiaccess interference in a non-line-of-sight ultraviolet optical wireless sensor network // Appl. Opt. 2007. V. 46, N 23. P. 5895–5901.
  11. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Troitskii V.O., Shiyanov D.V. Atmospheric Bistatic Communication Channels with Scattering. Part 1. Methods of study // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 364–370.
  12. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Ivanov V.V., Fedosov A.V., Gridnev Yu.V., Troitskii V.O., Dimaki V.A. Atmospheric Bistatic Communication Channels with Scattering. Part 2. Field Experiments in 2013 // Atmos. Ocean. Opt. 2015. V. 28, N 3. P. 202–208.
  13. Belov V.V., Tarasenkov M.V., Abramochkin V.N., Troitskii V.O. Over-the-horizon Optoelectronic Communication Systems // Russ. Phys. J. 2014. V. 57, N 7. P. 202–208.
  14. Belov V.V., Tarasenkov M.V., Abramochkin V.N. Bistatic Atmospheric Optoelectronic Communication Systems (Field Experiments) // Tech. Phys. Lett. 2014. V. 40, N 10. P. 871–874.
  15. Abramochkin V.N., Belov V.V., Gridnev Ju.V., Kudrjavcev A.N., Tarasenkov M.V., Fedosov A.V. Optiko-jelektronnaja svjaz' na rassejannom lazernom izluchenii v atmosfere. Polevye jeksperimenty // Svetotehnika. 2017. (V pechati).
  16. Belov V.V., Tarasenkov M.V. Tri algoritma statisticheskogo modelirovanija v zadachah opticheskoj svjazi na rassejannom izluchenii i bistaticheskogo zondirovanija // Optika atmosf. i okeana. 2016. V. 29, N 5. P. 397–403; Belov V.V., Tarasenkov M.V. Three algorithms of statistical modeling in problems of optical communication on scattered radiation and bistatic sensing // Atmos. Ocean. Opt. 2016. V. 29, N 6. P. 533–540.
  17. Belov V.V., Tarasenkov M.V. Algoritmy statisticheskogo modelirovanija impul'snyh reakcij bistaticheskih kanalov svjazi // Tr. Mezhdunar. konf. «Aktual'nye problemy vychislitel'noj i prikladnoj matematiki – 2015», posvjashhennoj 90-letiju so dnja rozhdenija akademika Gurija Ivanovicha Marchuka. In-t vychislitel'noj matematiki i matematicheskoj geofiziki SO RAN. Novosibirsk. 19–23 october 2015 year. Novosibirsk: Abvej, 2015. P. 95–101.
  18. Zuev V.E., Belov V.V., Veretennikov V.V. Teorija sistem v optike dispersnyh sred. Tomsk: IOA SO RAN, «Spektr», 1997. 402 p.
  19. Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A., Clough S.A., Gallery W.O. User Guide to LOWTRAN-7. ARGL-TR-86–0177. ERP 1010. MA. Hansom AFB, 1988. P. 137.
  20. Anisimova I.I., Gluhovskoj B.M. Fotojelektronnye umnozhiteli. M.: Sov. radio, 1974. 61 p.
  21. Aksenenko M.D., Baranochnikov M.L. Prijomniki opticheskogo izluchenija. M.: Radio i svjaz',  1987. 296 p.
  22. Soboleva N.A., Melamid A.E. Fotojelektronnye pribory. M.: Vyssh. shkola, 1974. 376 p.
  23. Vasil'ev A.F., Chmutin A.M. Fotojelektricheskie prijomniki izluchenija. Volgograd: VGU, 2010. 81 p.
  24. Chechik N.O., Fajnshtejn S.M., Lifshic T.M. Jelektronnye umnozhiteli / Pod red. D.V. Zernova. M.: GITTL, 1957. 576 p.
  25. Gurevich M.M. Fotometrija (teorija, metody i pribory). L.: Jenergoatomizdat, 1983. 272 p.