Vol. 30, issue 02, article # 4

Zаdvornykh I.V., Gribanov K.G., Zakharov V.I., Imasu R. Radiative transfer code for thermal and near infrared with multiple scattering. // Optika Atmosfery i Okeana. 2017. V. 30. No. 02. P. 128–133 [in Russian].
Copy the reference to clipboard
Abstract:

FIRE-ARMS software was supplemented with the vector radiative transfer model VLIDORT. The new version of the software allows a simulation of the outgoing thermal infrared radiation (TIR) from Earth and solar short infrared radiation (SWIR) reflected from the surface, taking into account multiple scattering for the same model and atmospheric sensing geometry. We performed spectra simulation of the outgoing radiation in TIR and SWIR with multiple scattering in a cloudless atmosphere and comparison of the spectra simulated with the spectra measured by GOSAT satellite spectrometers in cloudless atmosphere over Western Siberia. Calculated weighting functions show that simultaneous use of TIR and SWIR will improve the height resolution in vertical profiling of methane concentrations in the atmosphere.

Keywords:

radiative transfer, remote sensing, multiple scattering, GOSAT

References:

  1. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. Climate Change 2013: The Physical Science Basis // IPCC. Cambridge, New York: Cambridge University Press, 2013. 1552 p.
  2. Atmospheric Infrared Sounder: Mission & Instrument. [Электронный ресурс]. URL: http://airs.jpl.nasa.gov/ mission_and_instrument/overview (дата обращения 20.09.2016).
  3. Tashkun S.A., Perevalov V.I., Teffo J.L. CDSD-IASI, the high precision carbon dioxide spectroscopic databank: Version for METOP-IASI mission // Proc. ASA Int. Workshop. Reims, France. September 6–8, 2005. P. 95.
  4. Bovensmann H., Burrows J.P., Buchwitz M., Frerick J., Noel S., Rozanov V.V. SCIAMACHY: Mission objectives and measurement modes // J. Atmos. Sci. 1999. V. 56, N 2. P. 125–127.
  5. Kuze A., Suto H., Nakajima M., Hamazaki T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring // Appl. Opt. 2009. V. 48, N 35. P. 6716–6733.
  6. Matsunaga T., Yokota T., Maksyutov Sh., Morino I., Yoshida Yu., Saito M., Ajiro M., Uchino O. The Statuses of GOSAT and GOSAT-2 Projects at National Institute for Environmental Studies (NIES) // Geophysical Research Abstracts, EGU General Assembly 2015. [Jelektronnyj resurs]. URL: http://meetingorganizer.copernicus.org/EGU2015/EGU2015-13150.pdf (дата обращения 20.09.2016).
  7. Nakajima M., Suto H., Yotsumoto K., Miyakawa T., Shiomi K. GOSAT-2: Development Status of the mission instruments // Geophysical Research Abstracts, EGU General Assembly 2015. [Jelektronnyj resurs]. URL: http://meetingorganizer.copernicus.org/EGU2015/EGU2015-7731.pdf (дата обращения 20.09.2016).
  8. O’Dell C. The First Eighteen Months of NASA’s Orbiting Carbon Observatory-2 (OCO-2): Mission Status, Error Characterization, and Preliminary Results // Geophysical Research Abstracts, EGU General Assembly 2016. [Jelektronnyj resurs]. URL: http://meetingorganizer.copernicus.org/EGU2016/EGU2016-11151.pdf (data obrashhenija 20.09.2016).
  9. Rogers C.D. Inverse methods for atmospheric sounding. Theory and practice. Singapore, London: World Scientific Publishing, 2000. 253 p.
  10. Christi M.J., Stephens G.L. Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: A preliminary case study // J. Geophys. Res. 2004. V. 109, N D04316. P. 1–11.
  11. Sushkevich T.A. Matematicheskie modeli perenosa izluchenija. M.: BINOM. Laboratorija znanij, 2005. 661 p.
  12. Fomin B., Falaleeva V. A polarized atmospheric radiative transfer model for calculations of spectra of the stokes parameters of shortwave radiation based on the line-by-line and Monte Carlo methods // Atmosphere. 2012. V. 3, N 4. P. 451–467.
  13. Budak V., Kaloshin G., Shagalov O., Zheltov V. Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration // J. Opt. Soc. Amer. A. 2015. V. 23, N 15. P. 829–840.
  14. Budak V.P., Korkin S.V. Modelirovanie prostranstvennogo raspredelenija stepeni poljarizacii rassejannogo atmosferoj izluchenija na osnovanii polnogo analiticheskogo reshenija vektornogo uravnenija perenosa // Optika atmosf. i okeana. 2008. V. 21, N 1. P. 35–41.
  15. Zhuravleva T.B. Modelirovanie perenosa solnechnogo izluchenija v razlichnyh atmosfernyh uslovijah. Part I. Determinirovannaja atmosfera // Optika atmosf. i okeana. 2008. V. 21, N 2. P. 99–114.
  16. Rublev A.N. Modelirovanie perenosa opticheskogo izluchenija v zadachah radiacionnoj klimatologii i opredelenija parametrov zemnoj: Avtoref. dis. … dokt. fiz.-mat. nauk. M.: NIC «Planeta», 2013. 46 p.
  17. Chandrasekhar S. Radiative Transfer. Dover, 1960. 393 p.
  18. Gribanov K.G., Zakharov V.I., Tashkun S.A., Tyuterev Vl.G. A new software tool for radiative transfer calculations and its application to IMG/ADEOS data // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68, N 4. P. 435–451.
  19. Spurr R.J. VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media // J. Quant. Spectrosc. Radiat. Transfer. 2006. V. 102, N 2. P. 316–342.
  20. Spurr R.J. VLIDORT Version 2.6. User’s Guide [Электронный ресурс]. URL: http://web.gps.caltech.edu/~vijay/vlidort_2p6_f90userguide_v12_08feb2013_NC.pdf (дата обращения 20.09.2016).
  21. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner С.D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Faytl A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN-2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
  22. Tomasi C., Vitale V., Petkov B., Lupi A., Cacciari A. Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres // Appl. Opt. 2005. V. 44, N 16. P. 3320–3341.
  23. O’Brien D.M., Polonsky I., O’Dell C., Kuze A., Kikuchi N., Yoshida Y., Natraj V. Testing the polarization model for TANSO-FTS on GOSAT against clear-sky observations of Sun Glint over the ocean // IEEE Trans. Geosc. Remote. Sens. 2013. V. 51, N 12. P. 5199–5209.
  24. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project // Bull. Amer. Meteorol. Soc. 1996. N 77. P. 437–470.
  25. Spurr R.J., Christi M.J. On the generation of atmospheric property Jacobians from the (V)LIDORT linearized radiative transfer models // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 142. P. 109–115.

Back