Vol. 29, issue 11, article # 9

Dzеdolik I.V., Pеreskokov V.S. Topology of plazmon-polariton vortices on adaptive mirror. // Optika Atmosfery i Okeana. 2016. V. 29. No. 11. P. 954–959 [in Russian].
Copy the reference to clipboard
Abstract:

TM-modes of surface plasmon polaritons (SPP) can be excited on the surface of the metal layer of an adaptive mirror at falling of a bulk electromagnetic wave. A part of the energy of the electromagnetic wave is involved in excitation of the SPP modes. The E-modes of the SPP are excited at reflection of the TM-modes from the boundaries of deformed areas on the adaptive mirror surface. The superposition of TM-modes and E-modes leads to the formation of SPP vortices at singular points of the interference field. The topology of the SPP vortices changes depending on the curvature of the boundaries of deformed areas on the adaptive mirror surface. In this case, the SPP vortices appear and disappear in the components of the Poynting vector, and the screw dislocations emerge at the wavefront at the singular points of the field. Emergence of SPP vortices on the metal surface of a mirror should be considered when calculating the wavefront correction parameters in the adaptive systems.

Keywords:

adaptive mirror, surface plasmon-polariton, plasmon-polariton vortices

References:

  1. Lukin V.P. Formirovanie opticheskih puchkov i izobrazhenij na osnove primenenija sistem adaptivnoj optiki // Uspehi fiz. nauk. 2014. V. 184, N 6. P. 599–640.
  2. Antoshkin L.V., Botygina N.N., Emaleev O.N., Kovadlo P.G., Konjaev P.A., Kopylov E.A., Lukin V.P., Trifonov V.D. Jeffektivnost' ispol'zovanija upravljaemogo zerkala DM2-100-31 v adaptivnoj opticheskoj sisteme Bol'shogo solnechnogo vakuumnogo teleskopa // Optika atmosf. i okeana. 2012. V. 25, N 12. P. 1096–1098.
  3. Poverhnostnye poljaritony / Pod red. V.M. Agranovicha, D.L. Millsa. M.: Nauka, 1985. 525 p.
  4. Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin; Heidelberg; New York; London; Paris; Tokyo: Springer, 1986. 135 p.
  5. Majer S.A. Plazmonika: teorija i prilozhenija. M.; Izhevsk: NIC «Reguljarnaja i haoticheskaja dinamika», 2011. 296 p.
  6. Dzedolik I.V. Solitons and nonlinear waves of phonon-polaritons and plasmon-polaritons. New York: Nova Science, 2016. 151 p.
  7. Nye J.F., Berry M.V. Dislocation in wave trains // Proc. Roy. Soc. A. 1974. V. 336, iss. 1605. P. 165–190.
  8. Dennis M.R., O’Holleran K., Padgett M.J. Singular optics: Optical vortices and polarization singularities // Progr. Opt. 2009. V. 53. P. 293–363.
  9. Tan P.S., Yuan X.-C., Lin J., Wang Q., Mei T., Burge R.E., Mu G.G. Surface plasmon polaritons generated by optical vortex beams // Appl. Phys. Lett. 2008. V. 92. P. 111108 (3 p.).
  10. Kim H., Park J., Cho S.-W., Lee S.-Y., Kang M., Lee B. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens // Nano Lett. 2010. V. 10. P. 529–536.
  11. Genevet P., Yu N., Aieta F., Lin J., Kats M.A., Blanchard R., Scully M.O., Gaburro Z., Capasso F. Ultra-thin plasmonic optical vortex plate based on phase discontinuities // Appl. Phys. Lett. 2012. V. 100, N 013101.
  12. Yu N., Capasso F. Flat optics with designer metasurfaces // Natur. Mater. 2014. V. 13, N 2. P. 139–150.
  13. Zhou H., Dong J., Zhou Y., Zhang J., Liu M., Zhang X. Designing appointed and multiple focuses with plasmonic vortex lenses // IEEE Photon. J. 2015. V. 7, Article ID 4801007.
  14. Zhang J., Guo Z., Ge C., Wang W., Li R., Sun Y., Shen F., Qu S., Gao J. Plasmonic focusing lens based on single-turn nano-pinholes array // Opt. Express. 2015. V. 23. P. 17883–17891.
  15. Hecht B., Bielefeld H., Novotny L., Inouye Y., Pohl D.W. Local excitation, scattering, and interference of surface plasmons // Phys. Rev. Lett. 1996. V. 77. P. 1889–1892.
  16. Dzedolik I.V., Pereskokov V. Formation of vortices by interference of surface plasmon polaritons // J. Opt. Soc. Amer. A. 2016. V. 33, N 5. P. 1004–1009.
  17. Ordal M.A., Long L.L., Bell R.J., Bell S.E., Bell R.R., Alexander R.W., Ward C.A. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared // Appl. Opt. 1983. V. 22, N 7. P. 1099–1120.

Back