Vol. 29, issue 10, article # 10

Protasevich A. E., Tikhomirov B. A. Determination of the VT-relaxation time of molecules from the compression pulse width of a photoacoustic signal: the effect of gas pressure measurement errors. // Optika Atmosfery i Okeana. 2016. V. 29. No. 10. P. 859–861. DOI: 10.15372/AOO20161010 [in Russian].
Copy the reference to clipboard

Abstract:

The influence of gas pressure measurement errors in the chamber of a photoacoustic detector on accuracy of restoration of fast VT-relaxation time of molecules is investigated with the use of numerical simulation of a shape of photoacoustic signal. Using the relaxation of water vapor molecules from the lower excited vibrational state as an example, it is found that for values of the radius of the Gaussian laser beam w0 ~ 1 mm, typical in experiments with MK-301 microphone, the relaxation time τ0vT ~ 10–6 s × mbar can be restored from the dependencies of duration of photoacoustic compression pulse on gas pressure with a relative errors δτ0vT ≤ 10%, if systematic measurement error of pressure does not exceed 0.03 mbar. An error of restoration is directly proportional to the propagation time of sound through the illuminated area.

Keywords:

photoacoustic method, vibration-translational (VT) relaxation of molecules, error of restoration

References:

  1. Zuev V.E. Rasprostranenie lazernogo izluchenija v atmosfere. M.: Radio i svjaz', 1981. 288 p.
  2. Akulin V.M., Karlov N.V. Intensivnye rezonansnye vzaimodejstvija v kvantovoj jelektronike. M.: Nauka. Gl. red. fiz.-mat. lit., 1987. 288 p.
  3. Kondrat'ev V.N., Nikitin E.E. Kinetika i mehanizm gazofaznyh reakcij. M.: Nauka, 1974. 560 p.
  4. Finzi J., Hovis F.E., Panfilov V.N., Hess P., Moore C.B. Vibrational relaxation of water vapor // J. Chem. Phys. 1977. V. 67, N 9. P. 4053–4061.
  5. Zittel P.F., Masturzo D.E. Vibrational relaxation of H2O from 295 to 1020 K // J. Chem. Phys. 1989. V. 90, N 2. P. 977–989.
  6. Menard-Bourcin F., Doeynnette L., Menard J. Vibrational energy transfers in ozone exited into (101) state from double-resonance measurements // J. Chem. Phys. 1994. V. 101, N 10. P. 8636–8645.
  7. Slobodskaja P.V. Opredelenie skorosti perehoda kolebatel'noj jenergii molekul v jenergiju postupatel'nogo dvizhenija s pomoshh'ju spektrofona // Izv. AN SSSR. 1948. V. 12, N 5. P. 656–661.
  8. Aoki T., M. Katayama M. Impulsive optic-acoustic effect of CO2, SF6 and NH3 molecules // Jap. J. Appl. Phys. 1971. V. 10, N 10. P. 1303–1310.
  9. Beck K.M., Gordon R.J. Theory and application of time-resolved optoacoustics in gases // J. Chem. Phys. 1988. V. 89, N 9. P. 5560–5567.
  10. Ageev B.G., Nikiforova O.Ju., Ponomarev Ju.N. Izmerenija vremeni relaksacii kolebanija (103) H2O na optiko-akusticheskom spektrometre s rubinovym lazerom // Kvant. jelektron. 1983. V. 10, N 3. P. 608–611.
  11. Kapitanov V.A., Tikhomirov B.A. Pulse photoacoustic technique for the study of vibrational relaxation in gases // Appl. Opt. 1995. V. 34, N 6. P. 969–972.
  12. Tihomirov B.A. Vosstanovlenie formy signala davlenija iz mikrofonnogo impul'snogo signala // Optika atmosf. i okeana. 2013. V. 26, N 7. P. 541–546.
  13. Ponomarev Ju.N., Nikiforova O.Ju. Stolknovitel'naja relaksacija selektivno-vozbuzhdennogo sostavnogo kolebanija (103) molekuly Н2О // Optika atmosf. i okeana. 2003. V. 16, N 2. P. 105–112.
  14. Protasevich A.E. Utochnenie nekotoryh analiticheskih reshenij dlja optiko-akusticheskogo signala v zhidkostjah i gazah // Optika atmosf. i okeana. 2010. V. 23, N 11. P. 1021–1026.
  15. Heritier J.-M. Electrostrictive limit and focusing effects in pulsed photoacoustic detection // Opt. Commun. 1983. V. 44, N 4. P. 267–272.
  16. Dubrovskij I.M., Egorov B.V., Rjaboshapka K.P. Spravochnik po fizike. Kiev: Nauk. dumka, 1986. 560 p.