Vol. 29, issue 02, article # 4

Razhev A. M., Karagapoltsev E. S., Churkin D. S. High-power gas-discharge eximer ArF, KrCl, KrF, and XeCl lasers on gas mixtures free of buffer gas. // Optika Atmosfery i Okeana. 2016. V. 29. No. 02. P. 106–111. DOI: 10.15372/AOO20160204 [in Russian].
Copy the reference to clipboard

Abstract:

The results of experimental studies of the gas mixture (laser active medium) effect on the generation energy and overall efficiency of excimer discharge ArF- (193), KrCl- (223), KrF- (248), and XeCl lasers (308 nm) operating on gas mixtures without the use of a buffer gas are presented. The optimal (in terms of maximum radiation energy) ratio of the gas components of the active media of excimer lasers are found, at which the efficient operation is achieved with a sufficiently high output power of the laser radiation.
It is experimentally confirmed that for the rare gas halide discharge pumped excimer lasers the presence of a buffer gas in the active medium is not required for efficient laser operation. For example, in the binary excimer laser gas mixtures containing working rare gas and halogen-containing gas, for pulsed gas-discharge excimer lasers operating on electronic transitions of excimer ArF*, KrCl*, KrF*, and XeCl* molecules pumped by a transverse electric space discharge at reduced pressure a buffer-free gaseous mixture, laser pulse energy of up to 170 mJ and high pulsed laser power of up to 24 MW have been attained for the first time. The maximum total efficiency in an experiment for binary gas mixtures of KrF and XeCl lasers has reached 0.8%.

Keywords:

binary gas mixture, excimer laser, transverse electrical volume discharge, gas mixture without a buffer gas, low operating pressure, laser energy, full efficiency

References:

  1. Ray M.D., Sedlacek A.J. Ultraviolet mini-Raman lidar for stand-off, in-situ identification of chemical surface contaminants // Rev. Sci. Instrum. 2000. V. 71, N 9. P. 3485–3489.
  2. Arthur J.S., Mark D.R. Short-range, Non-contact detection of surface contamination using Raman lidar // Proc. SPIE. 2001. V. 4577. P. 95–104.
  3. Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Jeksperimental'naja ocenka chuvstvitel'nosti SKR-lidara pri ispol'zovanii srednego UF-diapazona dlin voln // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 70–74.
  4. Belov M.L., Gorodnichev V.A., Pashenina O.E. Sravnitel'nyj analiz moshhnosti vyhodnyh signalov lazernyh sistem lokacii i videnija ul'trafioletovogo diapazona. Jelektronnyj nauchno-tehnicheskij zhurnal «Nauka i obrazovanie». 2013. August, N 8. URL: http: //technomag.bmstu.ru/doc/587120.html (data obrashhenija 06.09.2015).
  5. Zubrilin N.G., Milanich A.I., Chernomorec M.P., Jurchuk S.V. Generacija jeksimernyh molekul XeCl, XeF i KrF v dvuhkomponentnyh smesjah // Kvant. jelektron. 1985. V. 12, N 3. P. 643–644.
  6. Fedorov A.I. XeCl-lazer nizkogo davlenija s prodol'nym razrjadom // Optika atmosf. i okeana. 1994. V. 7, N 1. P. 96–101.
  7. De la Rosa J., Eichler H.-J. KrF laser without buffer gas excited in a capacitively coupled discharge tube // Opt. Commun. 1987. V. 64, N 3. P. 285–287.
  8. Basov N.G., Zuev V.S., Kanaev A.V., Miheev L.D. Lazernaja generacija na KrCl pri opticheskom vozbuzhdenii // Kvant. jelektron. 1985. V. 12, N 11. P. 2197–2198.
  9. Tisone G.C., Hays A.K., Hoffman J.M. 109 Watt KrF and ArF molecular lasers // Opt. Commun. 1976. V. 18, N 1. P. 117–118.
  10. Razhev A.M., Shhedrin A.I., Kaljuzhnaja A.G., Rjabcev A.V., Zhupikov A.A. Vlijanie intensivnosti nakachki na jeffektivnost' jeksimernogo jelektrorazrjadnogo KrF-lazera na smesi He–Kr–F2 // Kvant. jelektron. 2004. V. 34, N 10. P. 901–906.