Vol. 29, issue 01, article # 7

Berezin I. A., Timofeev Yu. M., Virolainen Ya. A., Volkova K. A. Intercomparison of ground-based MW measurements of precipitable water vapor with radiosounding data. // Optika Atmosfery i Okeana. 2016. V. 29. No. 01. P. 56-63. DOI: 10.15372/AOO20160107 [in Russian].
Copy the reference to clipboard

Abstract:

Microwave (MW) radiometers are commonly used for monitoring precipitable water vapor (PWV) – the major atmospheric greenhouse gas. The quality and accuracy of the method is assessed in various measuring campaigns. In this study, we intercompare the results of PWV measurements performed with a ground-based MW radiometer RPG-HATPRO (at the Peterhof station of Saint Petersburg State University) and radiosounding data obtained at the Voeykovo station. The dataset includes more than 850 coincident measurements (at the day and at the nighttime) for the period between March 13, 2013 and May 31, 2014. The discrepancy of the both methods is caused by the errors of methods as well as by the spatial inhomogeneity of the fields of PWV in atmosphere. These mismatches can reach tens of percent, which must be taken into account in the intercomparison and validation of different methods for PWV retrieval. The exclusion of cases with significant moisture inhomogeneity allowed the reducing of mean errors and their standard deviation between two sets of measurements up to 3–4% and 12–14%, respectively.

Keywords:

precipitable water vapor, MW radiometer, radiosounding

References:

  1. Gurvich A.S., Ershov A.G., Naumov A.P., Plechkov V.M. Issledovanie vlagosoderzhanija atmosfery metodom nazemnoj radioteplolokacii // Meteorol. i gidrol. 1972. N 5. P. 22–27.
  2. Gorelik A.G., Kalashnikov V.V., Rajkova L.S., Frolov Ju.A. Radioteplovye izmerenija vlazhnosti atmosfery i integral'noj vodnosti oblakov // Izv. AN SSSR. Fiz. atmosf. i okeana. 1973. V. 9, N 5. P. 928–936.
  3. Zhevakin S.A. O radioteplolokacionnom opredelenii integral'noj vlazhnosti atmosfery i integral'noj vodnosti, temperatury i vysoty kapel'noj fazy oblakov // Izv. vuzov. Radiofiz. 1978. V. 21, N 8. P. 1122–1231.
  4. Stepanenko V.D., Shhukin G.G., Bobylev L.P., Matrosov S.Ju. Radioteplolokacija v meteorologii. L.: Gidrometizdat, 1987. 283 p.
  5. Gorelik A.G., Frolov Ju.A., Shhukin G.G. Kompleksnye SVCh- i IK-radiometricheskie issledovanija oblachnosti // Trudy GGO. 1989. Issue 526. P. 3–15.
  6. Shhukin G.G., Stepanenko V.D., Obrazcov S.P., Karavaev D.M., Zhukov V.Ju., Rybakov Ju.V. Sostojanie i perspektivy radiofizicheskih issledovanij atmosfery i podstilajushhej poverhnosti // Trudy GGO. 2009. Issue 560. P. 143–167.
  7. Kadygrov E.N. Mikrovolnovaja radiometrija atmosfernogo pogranichnogo sloja – metod, apparatura, rezul'taty izmerenij // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 697–704.
  8. Kadygrov E.N., Gorelik A.G., Miller E.A., Nekrasov V.V., Troickij A.V., Tochilkina T.A., Shaposhnikov A.N. Rezul'taty monitoringa termodinamicheskogo sostojanija troposfery mnogokanal'nym mikrovolnovym radiometricheskim kompleksom // Optika atmosf. i okeana. 2013. V. 26, N 6. P. 459–465.
  9. URL: http://cetemps.aquila.infn.it/mwrnet/
  10. Shhukin G.G., Karavaev D.M. Nekotorye rezul'taty i perspektivy issledovanij v oblasti SVCh-radiometrii (radioteplolokacii), provodimyh v GGO im. A.I. Voejkova // Uspehi zarubezhnoj radiojelektroniki. 2008. N 6. P. 29–37.
  11. Rabinovich Ju.I., Shhukin G.G. Opredelenie soderzhanija vodjanogo para v atmosfere po izmereniju mikrovolnovogo izluchenija // Trudy GGO. 1968. Issue 222. P. 62–73.
  12. Westwater E.R., Falls M.J. Ground-based microwave radiometric observations of precipitable water vapour: A comparison with ground truth from two radiosonde observation systems // J. Atmos. Ocean. Techn. 1989. V. 6, N 8. P. 724–730.
  13. Han Y., Snider J.B., Westwater E.R., Melfi S.H., Ferrare R.A. Observations of water vapor by ground-based microwave radiometers and Raman lidar // J. Geophys. Res. D. 1994. V. 99, N 9. P. 18695–18702. DOI: 10.1029/94JD01487.
  14. Karavaev D.M., Shhukin G.G. Vlagozapas atmosfery i vodozapas oblakov po dannym SVCh-radiometricheskih izmerenij // Trudy NIC DZA. «Prikladnaja meteorologija». 1997. Issue 1(546). P. 6–13.
  15. Guldner J., Spankuch D. Results of year-round remotely sensed integrated water vapor by ground-based microwave radiometry // J. Appl. Meteorol. 1999. V. 38, N 7. P. 981–988.
  16. Westwater E.R., Han Y., Shupe M.D., Matrosov S.Y. Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the surface heat budget of the Arctic Ocean project // J. Geophys. Res. D. 2001. V. 106, N 23. P. 32019–32030.
  17. Yuei-An Liou, Yu-Tun Teng, Teresa Van Hove, James C. Liljegren comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes // J. Appl. Meteorol. 2001. N 40. P. 5–15.  
  18. Memmo A., Ermanno F., Tiziana P., Cimini D., Ferretti R., Bonafoni S., Ciotti P. Comparison of MM5 integrated water vapor with microwave radiometer, GPS, and radiosonde measurements // IEEE Trans. Geosci. Remote Sens. 2005. V. 43, N 5. P. 1050–1058.
  19. Martin L., Matzler C., Tim J., Hewison T.J., Ruffieux D. Intercomparison of integrated water vapour measurements // Meteorologische Zeitschrift. 2006. V. 15, N 1. P. 57–64. DOI: 10.1127/0941-2948/2006/0098.
  20. Morland J., Deuber B., Feist D.G., Martin L., Nyeki S., Kämpfer N., Mätzler C., Jeannet P., Vuilleumier L. The STARTWAVE atmospheric water database // Atmos. Chem. Phys. 2006. V. 6. P. 2039–2056. [Электронный ресурс]. URL: www.atmos-chem-phys.net/6/2039/2006/
  21. Morland J., Collaud Coen M., Hocke K., Jeannet P., Mätzler C. Tropospheric water vapour above Switzerland over the last 12 years // Atmos. Chem. Phys. 2009. V. 9. P. 5975–5988. [Электронный ресурс]. URL: www.atmos-chem-phys.net/9/5975/2009/
  22. Mätzler C., Morland J. Refined physical retrieval of integrated water vapor and cloud liquid for microwave radiometer data // IEEE Trans. Geosci. Remote Sens. 2009. V. 47, N 6. P. 1585–1594.
  23. Karavaev D.M., Shhukin G.G. SVCh-radiometricheskie issledovanija vlagovodosoderzhanija atmosfery v period razvitija konvektivnyh oblakov i groz // Izv. vuzov. Severo-Kavkazskij region. Estestvennye nauki. Fizika atmosfery. 2010. Specvyp. P. 53–58.
  24. Berezin I.A., Virolajnen Ja.A., Timofeev Ju.M., Poberovskij A.V. Sravnenija IK- i MKV-nazemnyh metodov izmerenij obshhego soderzhanija vodjanogo para // Fizika atmosf. i okeana. Izv. RAN. 2016. V. 52, N 3. In print.
  25. Rose Th., Czekala H. Accurate atmospheric profiling with the RPG-HATPRO humidity and temperature profiler // RPG, Meckenheim, Germany. 2005. 20 р.
  26. URL: http://weather.uwyo.edu/upperair/sounding.html
  27. Fridzon M.B., Ermoshenko Ju.M. Radiozondirovanie atmosfery // Mir izmerenij. 2009. N 7. [Jelektronnyj resurs]. URL: http://ria-stk.ru/mi/adetail.php?ID=30717
  28. Semenov A.O., Virolajnen Ja.A., Timofeev Ju.M., Poberovskij A.V. Sravnenie nazemnyh IK-spektroskopicheskih izmerenij obshhego soderzhanija vodjanogo para s dannymi radiozondovyh izmerenij // Optika atmosf. i okeana. 2014. V. 27, N 11. P. 976–980.
  29. Vogelmann H., Sussmann R., Trickl T., Reichert A. Spatio-temporal variability of water vapor investigated by lidar and FTIR vertical soundings above Mt. Zugspitze // Atmos. Chem. Phys. Discuss. 2014. V. 14. P. 28231–28268. [Jelektronnyj resurs]. URL: www.atmos-chem-phys-discuss.net/14/28231/2014/acpd-14- 28231-2014. DOI: 10.5194/acpd-14-28231-2014