Vol. 28, issue 05, article # 9

Rodimova O.B. Spectral line shape and absorption in atmospheric windows. // Optika Atmosfery i Okeana. 2015. V. 28. No. 05. P. 460-473 [in Russian].
Copy the reference to clipboard
Abstract:

The basic concepts of the spectral line shape theory are outlined, which are essential for understanding the physical pattern of the absorption process at frequencies far from the line centers and characterize the theory as the independent part of spectroscopy. A relatively simple analytical expression for the line shape at large frequency detunings, including parameters of the classical and quantum intermolecular interaction potentials, gives a possibility to describe the spectral and temperature behavior of the absorption in band wings of different gases. It is shown that the general approach to the line shape problem underlying the asymptotical line wing theory enables the opportunity to represent the parameters, which were interpreted till now only from the viewpoint of the dimer hypothesis.
 

Keywords:

line wing theory, nonresonance absorption, intermolecular interaction potential, continuum absorption

References:

  1. Tvorogov S.D., Nesmelova L.I. Radiacionnye processy v kryl'jah polos atmosfernyh gazov // Izv. AN SSSR. Fiz. atmosf. i okeana. 1976. V. 12, N 6. P. 627–633.
  2. Nesmelova L.I., Tvorogov S.D., Fomin V.V. Spektroskopija kryl'ev linij. Novosibirsk: Nauka, 1977. 141 p.
  3. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekuljarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
  4. Tvorogov S.D., Rodimova O.B. Stolknovitel'nyj kontur spektral'nyh linij. Tomsk: Izdatelstvo IOA SO RAN, 2013. 196 p.
  5. Winters B.H., Silverman S., Benedict W.S. Line shape in the wing beyond the band head of the 4.3 mm band of CO2 // J. Quant. Spectrosc. Radiat. Transfer. 1964. V. 4, N 4. P. 527–537.
  6. Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines // J. Opt. Soc. Amer. 1969. V. 59, N 3. P. 267–280.
  7. Anderson P.W. Pressure broadening in the microwave and infrared regions // Phys. Rev. 1949. V. 76, N 5. P. 647–661.
  8. Tsao C.J., Curnutte B. Line-widths of pressure-broadened spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 1962. V. 2, N 1. P. 41–91.
  9. Fano U. Pressure broadening as a prototype of relaxation // Phys. Rev. 1963. V. 131, N 1. P. 259–268.
  10. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavlenija kvantovoj teorii. Novosibirsk: Nauka, 1984. 169 p.
  11. Tvorogov S.D., Rodimova O.B. Spectral line shape. I. Kinetic equation for arbitrary frequency detunings // J. Chem. Phys. 1995. V. 102, N 22. P. 8736–8745.
  12. Zwanzig R. Ensemble method in the theory of irreversibility // J. Chem. Phys. 1960. V. 33, N 5. P. 1338–1341.
  13. Tvorogov S.D., Rodimova O.B. Asimptoticheskij i kvazistaticheskij podhody v teorii kontura spektral'noj linii // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 31–45.
  14. Bogdanova Yu.V., Rodimova O.B. Line shape in far wings and water vapor absorption in a broad temperature interval // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2298–2307.
  15. Stogrin D.E., Hirschfelder J.O. Contribution of bound, metastable, and free molecules to the second virial coefficient and some properties of double molecules // J. Chem. Phys. 1959. V. 31, N 6. P. 1531–1545.
  16. Rosenkranz P.W. Pressure broadening of rotational bands. I. A statistical theory // J. Chem. Phys. 1985. V. 83, N 12. P. 6139–6144.
  17. Rosenkranz P.W. Pressure broadening of rotational bands. II. Water-vapor from 300 to 1100 cm–1 // J. Chem. Phys. 1987. V. 87, N 1. P. 163–170.
  18. Ma Q., Tipping R.H. A far wing line shape theory and its application to the water continuum absorption in the infrared region. I // J. Chem. Phys. 1991. V. 95, N 9. P. 6290–6301.
  19. Ma Q., Tipping R.H. A far wing line shape theory and its application to the water vibrational bands. II // J. Chem. Phys. 1992. V. 96, N 12. P. 8655–8663.
  20. Ma Q., Tipping R.H. The averaged density matrix in the coordinate representation: Application to the calculation of the far-wing line shapes for H2O // J. Chem. Phys. 1999. V. 111, N 13. P. 5909–5921.
  21. Ma Q., Tipping R.H. The density matrix of H2O–N2 in the coordinate representation: A Monte Carlo calculation of the far-wing line shape // J. Chem. Phys. 2000. V. 112, N 2. P. 574–584.
  22. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines // J. Chem. Phys. 2008. V. 128, N 12. P. 124313. DOI: 10.1063/1.2839604.
  23. Tvorogov S.D. Problema centrov mass v zadache o konture spektral'nyh linij. I. Sushhestvovanie dlinnyh traektorij // Optika atmosf. i okeana 2009. V. 22, N 5. P. 413–419.
  24. Bogdanova Yu.V., Rodimova O.B. Role of diffusion in the violation of the long-wave approximation in line wings // Int. J. Quant. Chem. 2012. V. 112, iss. 17. P. 2924–2931.
  25. Menoux V., Le Doucen R., Boissoles J., Boulet C. Line shape in the low-frequency wing of self- and N2-broadened ν3 CO2 lines: Temperature dependence of the asymmetry // Appl. Opt. 1991. V. 30, N 3. P. 281–286.
  26. Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filipov N.N. Influence of the line interference on the vibration-rotation band shapes // J. Quant. Spectrosc. Radiat. Transfer. 1984. V. 31, N 6. P. 521–543.
  27. Lamouroux J., Tran H., Laraia A.L., Gamache R.R., Rothman L.S., Gordon I.E., Hartmann J.-M. Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 mm region // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2321–2331.
  28. Stefani S., Piccioni G., Snels M., Grassi D., Adriani A. Experimental CO2 absorption coefficients at high pressure and high temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 117. P. 21–28.
  29. Tran H., Boulet C., Stefani S., Snels M., Piccioni G. Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm–1. I–central and wing regions of the allowed vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, iss. 6. P. 925–936.
  30. Burch D.E., Gryvnak D.A. Absorption of infrared radiant energy by CO2 and H2O. V. Absorption by CO2 between 1100 and 1835 cm–1 (9.1–5.5 mm) // J. Opt. Soc. Amer. 1971. V. 61, N 4. P. 499–503.
  31. Le Doucen R., Cousin C., Boulet C., Henry A. Temperature dependence of the absorption in the region beyond the 4.3 mm band of CO2. I: Pure CO2 case // Appl. Opt. 1985. V. 24, N 6. P. 897–906.
  32. Ma Q., Tipping R.H. The distribution of density matrices over potential-energy surfaces: Application to the calculation of the far-wing line shapes for CO2 // J. Chem. Phys. 1998. V. 108, N 9. P. 3386–3399.
  33. Ma Q., Tipping R.H., Boulet C., Bouanich J. Theoretical far-wing line shape and absorption for high-temperature CO2 // Appl. Opt. 1999. V. 38, N 3. P. 599–604.
  34. Vigasin A.A. Bimolecular absorption in atmospheric gases // Weakly interacting molecular pairs: Unconventional absorbers of radiation in the atmosphere / Eds. C. Camy-Peyret, A.A. Vigasin. Dordrecht: Kluwer, 2003. P. 23–47.
  35. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kojefficient pogloshhenija sveta v kryle polosy 4,3 mm CO2 // Izv. vuzov. Fiz. 1980. Issue 10. P. 106–107.
  36. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Spektral'noe povedenie kojefficienta pogloshhenija v polose 4,3 mm CO2 v shirokom diapazone temperatur i davlenij // Optika atmosf. i okeana. 1992. V. 5, N 9. P. 939–946.
  37. Rodimova O.B. Kontur spektral'nyh linij CO2 pri samoushirenii ot centra do dalekogo kryla // Optika atmosf. i okeana. 2002. V. 15, N 9. P. 768–777.
  38. Klimeshina T.E., Petrova T.M., Rodimova O.B., Solodov A.A., Solodov A.M. Pogloshhenie CO2 za kantami polos v oblasti 8000 cm–1 // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 925–931.
  39. Burch D.E. Investigation of the absorption of infrared radiation by atmospheric gases // Semi-Annual Technical Report. Philco-Ford Corporation, Aeronutronic Division, Newport Beach, CA. 1970. Rept. U-4784.
  40. Burch D.E., Alt R.L. Continuum absorption by H2O in the 700–1200 and 2400–2800 cm–1 windows // Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL. United States Air Force, Hanscom AFB: Massachusetts 01731. 1984. 31 p.
  41. Grant W.B. Water vapor absorption coefficients in the 8–13 mm spectral region: A critical review // Appl. Opt. 1990. V. 29, N 4. P. 451–462.
  42. Вaranov Yu.I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, iss. 8. P. 1304–1313.
  43. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. Laboratory measurements of the water-vapor continuum in the 1200–8000 cm–1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. D21301.
  44. Mondelain D., Aradj A., Kassi S., Campargue A. The water-vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 381–391.
  45. Ptashnik I.V., Shine K.P., Vigasin A.A. Water-vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, iss. 8. P. 1286–1303.
  46. Bignell K.J. The water-vapour infra-red continuum // Quart. J. Roy. Meteorol. Soc. 1970. V. 96, N 409. P. 390–403.
  47. Moskalenko N.I. Kojefficient kontinual'nogo pogloshhenija radiacii pri soudarenijah molekul H2O–N2 i H2O–H2O v oblasti spektra 8–14 mm // Izv. AN SSSR. Fiz. atmosf. i okeana. 1974. V. 10, № 9. C. 999–1001.
  48. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kojefficient pogloshhenija vodjanogo para pri razlichnyh temperaturah // Opticheskaja spektroskopija i standarty chastoty. Molekuljarnaja spektroskopija / Kollektivnaja monografija pod obshh. red. L.N. Sinicy i E.A. Vinogradova. Tomsk: Izd-vo IOA SO RAN, 2004. P. 413–436.
  49. Burch D.E. Continuum absorption by H2O // Report AFGL-TR-81-0300 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL. United States Air Force, Hanscom AFB, Massachusetts 01731. 1982. 46 p.
  50. Baranov Yu.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapour continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 12–13. P. 2291–2302.
  51. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water-vapor self-continuum absorption in near-infrared windows derived from laboratory experiments // J. Geophys. Res. 2011. V. 116. D16305.
  52. Klimeshina T.E., Rodimova O.B. Temperature dependence of the water-vapor continuum absorption in the 3–5 mm spectral region // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 119. P. 77–83.
  53. Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. A description of the H2O absorption in the 3−5 mm spectral region in violation of the long-wave approximation in line wings // Proc. SPIE. 2014. V. 9292. 0G. 6 p.
  54. Bogdanova Yu.V., Klimeshina T.E., Rodimova O.B. On the role of line wings of the water monomer in formation of the continuum in the 3–5 mm transparency window // Proc. XVII Int. Sympos. HighRuss-2012. Zelenogorsk, St. Petersburg, July, 2012. (Electronic source). Tomsk: IAO SB RAS, 2012. P. 119–127.
  55. Broujell Je.V., Grossman B.Je., Bykov A.D., Kapitanov V.A., Lazarev V.V., Ponomarev Ju.N., Sinica L.N., Korotchenko E.A., Strojnova V.N., Tihomirov B.A. Issledovanie sdvigov linij pogloshhenija H2O v vidimoj oblasti spektra davleniem vozduha // Optika atmosf. i okeana. 1990. V. 3, N 7. P. 675–690.
  56. Bykov A.D., Klimeshina T.E., Rodimova O.B. On the vibrational dependence of the quantum intermolecular interaction potential // Proc. SPIE. 2014. V. 9292. 0P. 8 p.
  57. Klimeshina T.E., Rodimova O.B. Izmenenie kontura linii v kryle ot polosy k polose v sluchae Н2О i СО2 // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 18–23.

Back