Vol. 28, issue 05, article # 5

Bykov A.D., Lavrent'eva N.N., Sinitsa L.N. Effects of strong vibrational excitation in water vapor spectroscopy. // Optika Atmosfery i Okeana. 2015. V. 28. No. 05. P. 417-429 [in Russian].
Copy the reference to clipboard
Abstract:

High-sensitive spectrometers, created at IAO SB RAS for studying highly excited states, are described. The spectrometers include a Fourier spectrometer with a multipath absorption cell and spectrometers that use modern methods of highly sensitive laser spectroscopy (intracavity laser spectrometers, spectrometers with a high quality external cavity). Designed spectrometers have a high spectral resolution (0.01…0.001 cm–1) and high sensitivity to absorption (10–7 – 3 × 10–9 cm–1), which makes them promising for the study of parameters of spectral lines arising from transitions to high-energy vibrational-rotational states.
The effects of the vibrational-rotational dynamics related to the chaotic behavior under strong excitation are considered by analyzing spectra of water vapor. They are: an anomalous centrifugal distortion, HEL-resonances in H2O, the nn3 highly excited states of the HD16O, the vibrational dependence of the line contour parameters, and the effect of intramolecular resonances on interference lines.

Keywords:

spectrometers, vibrational-rotational states, resonances, asymmetric top, potential surface, line broadening, line contour, intermolecular interactions

References:

  1. Bykov A.D., Makushkin Ju.S., Ulenikov O.N. Kolebatel'no-vrashhatel'naja spektroskopija vodjanogo para. Novosibirsk: Nauka, 1989. 296 p.
  2. Bykov A.D., Sinica L.N., Starikov V.I. Vvedenie v kolebatel'no-vrashhatel'nuju spektroskopiju mnogoatomnyh molekul. Tomsk: Izd-vo IOA SO RAN, 2004. 273 p.
  3. Buldyreva J., Lavrentieva N., Starikov V. Collisional line broadening and shifting of atmospheric gases // A practical guide for line shape modeling by current semi-classical approaches. London: Imperical College Press, 2010. 304 p.
  4. Bykov A.D., Korotchenko E.A., Makushkin Ju.S., Ponomarev Ju.N., Sinica L.N., Solodov A.M., Strojnova V.N., Tihomirov B.A. Issledovanie sdvigov centrov linij vodjanogo para davleniem vozduha // Optika atmosf. 1988. V. 1, N 1. P. 40–45.
  5. Bykov A.D., Lavrent'eva N.N., Sinica L.N. Analiz zavisimosti kojefficientov sdviga linij H2O davleniem ot kolebatel'nyh i vrashhatel'nyh kvantovyh chisel // Optika i spektroskopija. 1997. V. 83, N 1. P. 73–82.
  6. Campargue A., Wang Le, Mondelain D., Kassi S., Bezard B., Lellouch E., Coustenis A., de Bergh C., Hirtzig M., Drossart P. An empirical line list for methane in the 1.26–1.71 mm region for planetary investigations (T = 80–300 K). Application to titan // Icarus. 2012. V. 219, iss. 1. P. 110–128.
  7. Mazzotti F., Naumenko O.V., Kassi S., Bykov A.D., Campargue A. ICLAS of weak transitions of water between 11 300 and 12 850 cm–1. Comparison with FTS databases // J. Mol. Spectrosc. 2006. V. 239, N 2. P. 174–181.
  8. Brown L.R., Toth R.A., Dulick M. Empirical line parameters of H216O near 0.94 mm: positions, intensities and air-broadening coefficients // J. Mol. Spectrosc. 2002. V. 212, N 1. P. 57–82.
  9. Tolchenov R.N., Naumenko O., Zobov N.F., Shirin S.V., Polyansky O.L., Tennyson J., Carleer M., Coheur P.-F., Fally S., Jenouvrier A., Vandael A.С. Water vapour line assignments in the 9 250–26 000 cm–1 frequency range // J. Mol. Spectrosc. 2005. V. 233, N 1. P. 68–76.
  10. Ponomarev Ju.N., Petrova T.M., Solodov A.M., Solodov A.A., Sulakshin S.A. Fur'e-spektrometr s 30-metrovoj mnogohodovoj kjuvetoj dlja issledovanija slabyh spektrov pogloshhenija atmosfernyh gazov // Optika atmosf. i okeana. 2011. V. 24, N 8. P. 726–728.
  11. Klimeshina T.E., Petrova T.M., Rodimova O.B., Solodov  A.A., Solodov A.M. Pogloshhenie CO2 za kantami polos v oblasti 8000 sm–1 // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 925–931.
  12. Serdjukov V.I., Sinica L.N., Vasil'chenko S.S., Voronin B.A. Vysokochuvstvitel'naja Fur'e-spektroskopija v vysokochastotnoj oblasti s nebol'shimi mnogohodovymi kjuvetami // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 240–246.
  13. Serdyukov V.I., Sinitsa L.N., Vasil’chenko S.S. Highly sensitive fourier transform spectroscopy with led sources // J. Mol. Spectrosc. 2013. V. 290, N 1. P. 13–17.
  14. Tyryshkin I.S., Ponomarev Ju.N., Bykov A.D., Voronin B.A., Naumenko O.V., Savel'ev V.N., Sinica L.N. Spektr pogloshhenija vodjanogo para v diapazone 13300–13800 sm–1 // Optika atmosf. i okeana. 1999. V. 12, N 9. P. 825–828.
  15. Pahomycheva L.A., Sviridenkov Je.A., Suchkov A.F., Titova L.V., Churilov S.S. Linejchataja struktura spektrov generacii OKG s neodnorodnym ushireniem linii usilenija // Pis'ma v ZhJeTF. 1970. V. 12, issue 2. P. 60–63.
  16. Luk'janenko S.F., Makogon M.M., Sinica L.N. Vnutrirezonatornaja lazernaja spektroskopija. Osnovy metoda i primenenija. Novosibirsk: Nauka, 1985. 121 p.
  17. Sviridenkov E.A., Sinitsa L.N. Intracavity laser spectroscopy // Proc. SPIE. 1998. V. 3342. 270 р.
  18. Makogon M.M., Ponomarev Ju.N., Sinica L.N. Razvitie metodov i tehniki lazernoj spektroskopii v Institute optiki i spektroskopii SO RAN // Optika atmosf. i okeana. 2009. V. 22, N 10. P. 958–965.
  19. Sinica L.N., Solodov A.M. Vysokochuvstvitel'nyj spektrometr s vysokodobrotnym rezonatorom v oblasti 0,9 mm // Optika atmosf. i okeana. 2008. V. 21, N 4. P. 352–354.
  20. Mikhailenko S.N., Serdyukov V.I., Sinitsa L.N. Led-based fourier transform spectroscopy of H218O in the range of 15 000 – 16 000 cm–1 // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 156, N 1. P. 36–46.
  21. Flaud J.-M., Camy-Peyret C. Vibration-rotation intensities in H2O-type molecules. Application to the 2n2, n1, and n3 bands of H216O // J. Mol. Spectrosc. 1975. V. 55, N 2. P. 278–310.
  22. Camy-Peyret C., Flaud J.-M., Maillard J.P. The 4n2 band of H216O // J. Phys. Lett. 1980. V. 41, N 2. P. L-23–L-26.
  23. Starikov V.I., Machancheev B.N., Tyuterev Vl.G. Effect of bending vibration on rotational centrifugal distortion centrifugal distortion parameters of X2Y molecules. Application to the water molecule // J. Phys. Lett. 1984. V. 45, N 1. P. L-11–L-15.
  24. Starikov V.I., Tyuterev Vl.G. Vnutrimolekuljarnye vzaimodejstvija i teoreticheskie metody v spektroskopii nezhestkih molekul. Tomsk: Izdatelstvo «Spektr» IOA SO RAN, 1997. 232 p.
  25. Bykov A.D., Voronin B.A., Voronina S.S. Ocenki vrashhatel'nyh postojannyh dlja kolebatel'nyh sostojanij tipa (0 n2 0) molekuly vody // Optika atmosf. i okeana. 2002. V. 15, N 12. P. 1051–1055.
  26. Tyuterev Vl.G. The generating function approach to the formulation of the effective rotational Hamiltonian // J. Mol. Spectrosc. 1992. V. 151, iss. 1. P. 97–129.
  27. Chevillard J.-P., Mandin J.-Y., Flaud J.-M., Camy-Peyret C. H216O: Line positions and intensities between 8000 and 9500 cm–1: The second hexad of interacting vibrational states: {(050), (130), (031), (210), (111), (012)} // Can. J. Phys. 1988. V. 66, N 11. P. 997–1011.
  28. Bykov A.D., Naumenko O.V., Sinica L.N. Novyj rezonans v molekule vody // Optika atmosf. 1990. V. 3, N 10. P. 1115–1120.
  29. Starikov V.I., Mihajlenko S.N. O novyh rezonansah v molekule Н2О // Optika atmosf. 1991. V. 4, N 6. P. 576–583.
  30. Bykov A., Naumenko O., Sinitsa L., Voronin B., Camy-Peyret C., Flaud J.-M., Lanquetin R. High-order resonances in the water molecule // J. Mol. Spectrosc. 2000. V. 205, iss. 1. P. 1–8.
  31. Naumenko O., Campargue A. High-order resonance interactions in HDO: Analysis of the absorption spectrum in the 14 980–15 350 sm–1 spectral region // J. Mol. Spectrosc. 2000. V. 199, N 1. P. 59–72.
  32. Bertseva E., Naumenko O., Campargue A. The 5nOH overtone transition of HDO // J. Mol. Spectrosc. 2000. V. 203, N 1. P. 28–36.
  33. Jensen P. The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach // J. Mol. Spectrosc. 1989. V. 133, iss. 2. P. 438–460.
  34. Partridge H., Schwenke D.W. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculation and experimental data // J. Chem. Phys. 1997. V. 106, N 11. P. 4618–4639.
  35. Barletta P., Shirin S.V., Zobov N.F. et al. CVRQD ab initio ground-state adiabatic potential energy for water molecule // J. Chem. Phys. 2006. V. 125. 204307.
  36. Lynch R., Gamache R.R., Neshyba S.P. Fully complex implementation of the Robert–Bonamy formalism: Halfwidths and line shifts of H2O broadened by N2 // J. Chem. Phys. 1996. V. 105, N 4. P. 5711–5721.
  37. Gamache R.R., Lynch R., Plateaux J.J., Barbe A. Halfwidths and line shifts of water vapor broadening by CO2: Measurements and complex Robert–Bonamy formalism calculations // J. Quant. Spectrosc. Radiat. Transfer. 1997. V. 57, iss. 4. P. 485–496.
  38. Valentin A., Claveau Ch., Bykov A., Lavrentieva N., Saveliev V., Sinitsa L. The water vapor n2 band lineshift coefficients induced by nitrogen pressure // J. Mol. Spectrosc. 1999. V. 198, iss. 2. P. 218–229.
  39. Zéninari V., Parvitte B., Courtois D., Lavrentieva N.N., Ponomarev Yu.N., Durry G. Pressure broadening and shift coefficients of H2O due to perturbation by N2, O2, H2, and He in the 1.39 mm region: Experiment and calculations // Mol. Phys. 2004. V. 102. P. 1697–1706.
  40. Camy-Peyret C., Valentin A., Claveau Ch., Bykov A., Lavrentieva N., Saveliev V., Sinitsa L. Half-width temperature dependence of nitrogen broadened lines in the n2 band of H2O // J. Mol. Spectrosc. 2004. V. 224, iss. 2. P. 164–175.
  41. Bykov A., Lavrentieva N., Sinitsa L. Semiempiric approach for the line broadening and shifting calculation // Mol. Phys. 2004. V. 102. P. 1706–1712.
  42. Barber R.J., Tennyson J., Harris G.J., Tolchenov R.N. A high accuracy synthetic linelist for hot water // Mon. Notic Roy. Astron. Soc. 2006. V. 368, N 3. P. 1087–1094.
  43. Tennyson J., Kostin M.A., Barletta P., Harris G.J., Ramanalal J., Polyansky O.L., Zobov N.F. DVR3D: A program suite for the calculation of rotation-vibration spectra of triatomic molecules // Comput. Phys. Commun. 2004. V. 163. P. 85–94.
  44. Shirin S.V., Polyansky O.L., Zobov N.F., Barletta P., Tennyson J. Spectroscopically determined potential energy surface of H216O up to 25 000 cm–1 // J. Chem. Phys. 2003. V. 118. P. 2124–2133.
  45. Schwenke D.W., Partridge H. Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities // J. Chem. Phys. 2003. V. 113. P. 6592.
  46. Tsao C.J., Curnutte B. Line-width of pressure-broadened spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 1961. V. 2. P. 41–91.
  47. Bykov A.D., Lavrentieva N.N., Mishina T.P., Sinitsa L.N., Barber R.J., Tolchenov R.N., Tennyson J. Water vapor line width and shift calculations with accurate vibration-rotation wave functions // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 3034. P. 1–11.
  48. Lavrent'eva N.N., Mishina T.P., Sinica L.N., Tennison Dzh. Raschety samoushirenija i samosdviga spektral'nyh linij vodjanogo para s ispol'zovaniem tochnyh kolebatel'no-vrashhatel'nyh volnovyh funkcij // Optika atmosf. i okeana. 2008. V. 21, N 12. P. 1096–1100.
  49. URL: http://wadis.saga.iao.ru/
  50. Grossman B.E., Browell W.E. Spectroscopy of Water Vapor in the 720 nm wavelength region: Line strengths, self-induced pressure shifts // J. Mol. Spectrosc. 1989. V. 136, iss. 2. P. 264–294.
  51. Grossman B.E., Browell W.E. Line-shape asymmetry of water vapor absorption lines in the 720-nm wavelength region // J. Quant. Spectrosc. Radiat. Transfer. 1991. V. 45, N 6. P. 339–348.
  52. Grossman B.E., Browell W.E. Measurements of H216O linestrengths and air-induced broadening and shifts in the 815-nm spectral region // J. Mol. Spectrosc. 1997. V. 185. P. 58–70.
  53. Zuev V.E., Makushkin Ju.S., Ponomarev Ju.N. Sovremennye problemy atmosfernoj optiki. V. 3. Spektroskopija atmosfery. L.: Gidrometeoizdat, 1987. 247 p.
  54. Labani B., Bonamy J., Robert D., Hartman J.-M., Taine J. Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions // J. Chem. Phys. 1986. V. 84, N 8. P. 4256–4267.
  55. Frenkel L., Woods D. The microwave absorption by H2O vapor and its mixtures with gases between 100 and 300 // Proc. IEEE. 1966. V. 54. P. 498–505.
  56. Broujell Je.V., Grossman B.Je., Bykov A.D., Kapitanov V.A., Lazarev V.V., Ponomarev Ju.N., Sinica L.N., Korotchenko E.A., Strojnova V.N., Tihomirov B.A. Issledovanie sdvigov linij pogloshhenija H2O v vidimoj oblasti spektra davleniem vozduha // Optika atmosf. i okeana. 1990. V. 3, N 7. P. 675–690.
  57. Gamache R.R. An intercomparison of measured pressure-broadening and pressure shifting parameters of water vapor // J. Chem. Phys. 2004. V. 82. P. 1013–1027.
  58. Mandin J.-Y., Chevillard J.-P., Flaud J.-M., Camy-Peyret C. N2-broadening coefficients of H216O lines between 9 500 and 11 500 cm–1 // J. Mol. Spectrosc. 1989. V. 138, iss. 1. P. 272–281.
  59. Grossman B.E., Browell W.E. Water vapor line broadening and shifting by air, nitrogen, oxigen, and argon in the 720 nm wavelength region // J. Mol. Spectrosc. 1989. V. 138, iss. 2. P. 562.
  60. Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Vibrational dependence of an intermolecular potential for H2O–He system // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 241–253.
  61. Bykov A.D., Lavrent'eva N.N., Sinica L.N., Solodov A.M. Vlijanie vnutrimolekuljarnyh rezonansov na interferenciju spektral'nyh linij vodjanogo para // Optika atmosf. i okeana. 2001. V. 9, N 9. P. 846–852.
  62. Bykov A.D., Lavrent'eva N.N., Mishina T.P., Sinica L.N. Vlijanie interferencii linij vodjanogo para na atmosfernoe propuskanie izluchenija blizhnego IK-diapazona // Optika i spektroskopija. 2008. V. 104, N 2. P. 165–171.
  63. Cherkasov M.R. K ushireniju davleniem perekryvajushhihsja spektral'nyh linij // Optika i spektroskopija. 1976. V. 40, issue 1. P. 7–13.

Back