Vol. 28, issue 02, article # 11

Dembelov M.G., Bashkuev Yu.B., Loukhnev A.V., Loukhneva O.F., San’kov V.A. Diagnostics of the content of atmospheric water vapor according to data of GPS measurements. // Optika Atmosfery i Okeana. 2015. V. 28. No. 02. P. 172-177 [in Russian].
Copy the reference to clipboard
Abstract:

A continuous GPS network consisting seven permanent points of observation is created for the study of the geodynamic processes in the Baikal region. The results of processing the primary GPS data provide continuous atmospheric data in the form of total zenith troposphere delay, which can be used for meteorological and climatological studies. The total delay is the sum of “dry” or hydrostatic and wet components. The wet component determines the integrated amount of water vapor and quantily of precipitated water above the point of measurement. Thus, GPS measurements provide the possibility of obtaining initial data for development of new numerical models of zenith troposphere delay and integrated precipitated water vapor for the problems of meteorology.

Keywords:

GPS measurements, troposphere zenith delay, meteorology data, refraction index, atmosphere water vapor

References:

  1. King R.W., Bock Y. Documentation for the GAMIT GPS. Analysis Software. Release 10.0. Mass. Inst. of Technol. and University of California, San-Diego, 2002. 206 p.
  2. Luhnev A.V., San'kov V.A., Miroshnichenko A.I., Ashurkov S.V., Byzov L.M., San'kov A.V., Bashkuev Ju.B., Dembelov M.G., Kale Je. Sovremennye deformacii zemnoj kory v oblasti sochlenenija segmentov riftov central'noj chasti Bajkal'skoj riftovoj sistemy po dannym GPS-geodezii // Geol. i geofiz. 2013. V. 54, N 11. P. 1814–1825.
  3. Davis J., Herring T.A., Shapiro I.I., Rogers A.E.E., Elgered G. Geodesy by radio interferometery: Effects of atmospheric modeling errors on the estimates on baseline lengths // Radio Sci. 1985. V. 20, N 6. P. 1593–1607.
  4. Hutorova O.G., Vasil'ev A.A., Hutorov V.E. O perspektivah issledovanija neodnorodnoj struktury troposfery s pomoshh'ju seti GPS-GLONASS // Optika atmosf. i okeana. 2010. V. 23, N 6. P. 510–514.
  5. Gomboev N.C., Cydypov Ch.C. Refrakcionnye svojstva atmosfery kontinental'nyh rajonov. Novosibirsk: Nauka, 1985. 126 p.
  6. Bevis M., Businger S., Herring T., Rocken C., Anthes R.A., Ware R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system // J. Geophys. Res. D. 1992. V. 97, N 14. P. 15787–15801.
  7. Hopfield H.S. Two quartic tropospheric refractivity profile for correcting satellite data // J. Geophys. Res. 1969. V. 74, N 18. P. 4487–4499.
  8. Elgered G., Davis J.L., Herring T.A., Shapiro I.I. Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay // J. Geophys. Res. B. 1991. V. 96, N 4. P. 6541–6555.
  9. Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites // The Use of Artificial Satellites for Geodesy. Geophys. Monogr. Ser. AGU. Washington. D.C. 1972. V. 15. P. 247–251.
  10. San'kov V.A., Luhnev A.V., Miroshnichenko A.I., Dobrynina A.A., Ashurkov S.V., Byzov L.M., Dembelov M.G., Kale Je., Deversher Zh. Sovremennye gorizontal'nye dvizhenija i sejsmichnost' juzhnoj chasti Bajkal'skoj vpadiny (Bajkal'skaja riftovaja sistema) // Fiz. Zemli. 2014. N 6. P. 70–79.

Back