Vol. 27, issue 11, article # 1

Kablukova E.G., Kargin B.A., Lisenko A.A., Matvienko G.G., Chesnokov E.N. Numerical statistical simulation of terahertz radiation propagation in cloudiness. // Optika Atmosfery i Okeana. 2014. V. 27. No. 11. P. 939-948 [in Russian].
Copy the reference to clipboard

The numerical estimates of the time distribution of the terahertz LIDAR based on the Novosibirsk Free Electron Laser radiation reflected by the lower cloudiness boundary are obtained by Monte Carlo method taking into account  specific initial and boundary geometrical optical conditions, the cloudiness type, and water vapor attenuation along the sensing path. The location signal structure is analyzed as dependent on the multiple scattering background, wavelengths, water vapor concentration in the atmosphere. It is shown that intensity gradient of the reflected signal grows with the attenuation coefficient. Ratios between the contributions of single and multiple scattering in the echo signal structure are estimated depending on the optical depth of sensing.


terahertz range, remote sensing, method Monte Carlo, local estimates


1. Kablukova E.G., Lisenko A.A., Matvienko G.G., Babchenko S.V., Chesnokov E.N. Perspektivy primenenija teragercovogo lazera na svobodnyh jelektronah v zadachah distancionnogo zondirovanija atmosfery // Optika atmosf. i okeana. 2014. V. 27, N 8. P. 746–751.
2. Jacquinet-Husson N., Scott N.A., Chedin A., Chursin A.A. The GEISA spectroscopic database system updated for IASI direct radiative transfer modeling. // Atmos. Ocean. Opt. 2003. V.16, N 3. P. 256–261. URL: http:// ara.lmd.polytech-nique.fr/geisa
3. Racette P., Adler R.F., Wang J.R., Gasiewski A.J., Jackson D.M., Zacharias D.S. An airborne millimeter-wave imaging radiometer for cloud, precipitation, and atmospheric water vapor studies //J. Appl. Ocean. Technol. 1996. N 13. P. 610–619.
4. Evans K.F., Evans A.H., Nolt I.G., Marshall B.T. The prospect for remote sensing of cirrus clouds with a submillimeter-wave spectrometer // J. Appl. Meteorol. 1999. V. 38. P. 514–525.
5. Vaneck M.D., Nolt I.G., Tappan N.D., Ade P.A.R., Gannaway F.C., Hamilton P.A., Lee C., Evans K.F., Davis J.E., Predko S. Far-infrared sensor for cirrus (FIRSC): An aircraft-based Fourier-transform spectrometer to measure cloud radiance //Appl. Opt. 2001. V. 40, N 13. P. 2169–2176.
6. Sharkov E.A. Passive Microwave Remote Sensing of the Earth: Physical Foundations. New York; Berlin; London; Paris; Tokyo: Springer PRAXIS, 2003. 613 p.
7. URL: http://act.nict.go.jp/thz/en/3/research3_e.html
8. Dejrmendzhan D. Rassejanie jelektromagnitnogo izluchenija sfericheskimi polidispersnymi chasticami. M.: Mir, 1971. 298 p.
9. Fejgel'son E.M. Radiacionnye processy v sloistoobraznyh oblakah. M.: Nauka, 1964. 229 p.
10. Borovikov A.M., Gajvoronskij I.I., Zak E.G., Kostarev V.V., Mazin I.P., Minervin V.E., Hrgian A.H., Shmeter S.M. Fizika oblakov / Pod red. A.H. Hrgiana. L.: Gidrometizdat, 1961. 459 p.
11. Mejson B.D. Fizika oblakov / Per. s angl. pod red. V.G. Morachevskogo, E.S. Seleznevoj. L.: Gidrometizdat, 1961. 542 p.
12. Silverman B.A., Sprague E.D. Airborne Measurements of In-Cloud Visibility // National Conference on Weather Modification of the American Meteorological Society, Santa Barbara, California, 1970.
13. Warren S.G., Brandt R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation // J. Geophys. Res. 2008. V. 113. D14220. DOI: 10.1029/2007JD009744, 2008.
14. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinjan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike. M.: Nauka, 1976. 282 p.
15. Lotova G.Z. Modification of the “double local estimate” of the Monte Carlo method in radiation transfer theory // Russ. J. Number. Anal. Math. Modelling. 2011. V. 26, N 5. P. 491–500.