Vol. 27, issue 09, article # 12

Banakh V.A., Smalikho I.N., Rahm S. Estimation of the structure characteristics of refractive index of air from a coherent Doppler wind lidar data. // Optika Atmosfery i Okeana. 2014. V. 27. No. 09. P. 841-845 [in Russian].
Copy the reference to clipboard
Abstract:

A technique is proposed for estimation of the structure characteristics of refractive index of air from data of a coherent Doppler wind lidar. The proposed technique is tested in atmospheric experiments. Time profiles of the structure characteristics of refractive index in the atmospheric surface layer are obtained and compared with the time profiles of the dissipation rate of the kinetic energy of turbulence obtained from the same lidar data. It is shown in this way that coherent lidars can be used for investigation of not only wind turbulence, but also temperature turbulence.

Keywords:

coherent Doppler lidar, signal-noise ratio, structure characteristics of refractive index, rate of dissipation of turbulent energy

References:

1. Banah V.A., Smaliho I.N. Kogerentnye doplerovskie vetrovye lidary v turbulentnoj atmosfere. Tomsk: Izd-vo IOA SO RAN, 2013. 304 p.
2. Frehlich R.G., Kavaya M.J. Coherent laser radar performance for general atmospheric turbulence // Appl. Opt. 1991. V. 30. P. 5325–5337.
3. Smalikho I.N., Köpp F., Rahm S. Measurement of atmospheric turbulence by 2-mm Doppler lidar // J. Atmos. Ocean. Technol. 2005. V. 22, N 11. P. 1733–1747.
4. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevcov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
5. Banakh V.A., Mironov V.L. Lidar in a turbulent atmosphere. Artech House: Boston & London, 1987. 185 р.
6. Banah V.A. Usilenie srednej moshhnosti obratno rassejannogo v atmosfere izluchenija v rezhime sil'noj opticheskoj turbulentnosti // Optika atmosf. i okeana. 2012. V. 25, N 10. P. 857–862.
7. Grund C.J., Banta R.M., George J.L., Howell J.N., Post M.J., Richter R.A., Weickman A.M. High-resolution Doppler lidar for boundary layer and cloud research // J. Atmos. Ocean. Technol. 2001. V. 18, N 3. P. 376–393.
8. Frehlich R.G., Cornman L.B. Estimating spatial velocity statistics with coherent Doppler lidar // J. Atmos. Ocean. Technol. 2002. V. 19, N 3. P. 355–366.
9. Smaliho I.N., Pichugina E.L., Banah V.A., Brjuer A. Izmerenija impul'snym kogerentnym lidarom parametrov shlejfa, generiruemogo vetrjakom pri razlichnyh atmosfernyh uslovijah // Izv. vuzov. Fiz. 2012. V. 55, N 8. P. 91–95.
10. Smaliho I.N., Banah V.A. Tochnost' ocenivanija skorosti dissipacii jenergii turbulentnosti iz izmerenij vetra impul'snym kogerentnym doplerovskim lidarom pri konicheskom skanirovanii zondirujushhim puchkom. Part I. Algoritm obrabotki lidarnyh dannyh // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 213–219.
11. Smaliho I.N., Banah V.A., Pichugina E.L., Brjuer A. Tochnost' ocenivanija skorosti dissipacii jenergii turbulentnosti iz izmerenij vetra impul'snym kogerentnym doplerovskim lidarom pri konicheskom skanirovanii zondirujushhim puchkom. Part II. Chislennyj i naturnyj jeksperimenty // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 220–225.
12. Smalikho I.N., Banakh V.A., Pichugina Y.L., Brewer W.A., Banta R.M., Lundquist J.K., Kelley N.D. Lidar investigation of atmosphere effect on a wind turbine wake // J. Atmos. Ocean. Technol. 2013. V. 30, N 11. P. 2554–2570. DOI: http://dx.doi.org/10.1175/JTECH-D-12-00108.1
13. Hutt D.L. Modeling and measurements of atmospheric optical turbulence over land // Opt. Eng. 1999. V. 38, N 8. P. 1288–1295.
14. Pierson G., Davies F., Collier C. An analysis of performance of the UFAM Pulsed Doppler lidar for the observing the boundary layer // J. Atmos. Ocean. Technol. 2009. V. 26, N 2. P. 240–250.

Back