Vol. 27, issue 07, article # 5

Kozodyorov V.V., Dmitriev E.V., Kamentsev V.P. Cognitive technologies for processing optical images of high spatial and spectral resolution. // Optika Atmosfery i Okeana. 2014. V. 27. No. 07. P. 593-600 [in Russian].
Copy the reference to clipboard
Abstract:

Main stages of development of technologies for natural and anthropogenic objects recognition (cognitive technologies for optical images processing) using remote sensing data are considered together with computational procedures of atmospheric correction of multispectral and hyperspectral airspace images. Main attention is paid to recognition of forest ecosystems of various species and age, based on in-flight testing of a domestic imaging spectrometer for a selected test area, where ground-based forest inventory and other observations were carried out. High accuracies of the recognition of separate gradations of ages for the selected pure birch and pine species are revealed, using the elaborated softwave for airborne hyperspectral image processing.

Keywords:

remote sensing, optical images, pattern recognition, forest canopies of various species and age

References:

1. Duda R., Hart P. Raspoznavanie obrazov i analiz scen. M.: Mir, 1976. 509 p.
2. Kozoderov V.V. Ocenka iskazhajushhego vlijanija atmosfery pri deshifrirovanii prirodnyh obrazovanij iz kosmosa // Ajerokosmicheskie issledovanija Zemli. Obrabotka videoinformacii s ispol'zovaniem JeVM. M.: Nauka, 1978. P. 24–35.
3. Jain A.K. Advances in mathematical models in image processing // Proc. IEEE. 1981. V. 69. P. 502–528.
4. Friedland N.S., Rosenfeld A. Compact object recognition using energy-function based optimization // IEEE Trans. Pattern Anal. Machine Intell. 1992. V. 14, iss. 7. P. 770–777.
5. Tso B., Olsen R.C. A contextual classification scheme based on MRF model with improved parameter estimation and multiscale fuzzy line process // Remote Sens.  Environ. 2005. V. 97. P. 127–136.
6. Kozoderov V.V. Atmosfernaja korrekcija videoizobrazhenij // Issled. Zemli iz kosmosa. 1983. N 2. P. 65–75.
7. Li X.W., Strahler A.H., Woodcock C.E. A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies // IEEE Trans. Geosci. Remote Sens. 1995. V. 33, N 2. P. 466–480.
8. Kondratyev K.Ya., Kozoderov V.V., Smokty O.I. Remote sensing of the Earth from space: atmospheric correction. Heidelberg: Springer-Verlag, 1992. 478 p.
9. Deering D.W. Field measurements of directional reflectance // Theory and Applications of Optical Remote Sensing. N.Y.: John Wiley & Sons, 1989. P. 14–65.
10. Curran P.J., Foody G.M., Kondratyev K.Ya., Kozoderov V.V., Fedchenko P.P. Remote sensing of soils and vegetation in the USSR. London: Taylor and Francis, 1990. 203 p.
11. Breda N. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies // J. Experim. Botany. 2003. V. 54, iss. 392. P. 2403–2417.
12. Kozoderov V.V. Osobennosti realizacii modelej ocenki fitomassy rastitel'nosti po nabljudenijam iz kosmosa // Issled. Zemli iz kosmosa. 2006. N 2. P. 79–88.
13. Kozoderov V.V., Kosolapov V.S. Opticheskoe zondirovanie biosfery po mnogospektral'nym ajerokosmicheskim izobrazhenijam // Optika atmosf. 1992. V. 5, N 8. P. 852–859.
14. Kozoderov V.V. A scientific approach to employ monitoring and modeling techniques for Global Change and Terrestrial Ecosystems and other related projects // J. Biogeogr. 1995. V. 22, N 415. P. 927–933.
15. Prince S.D., Justice C.O., Eds., Coarse resolution remote sensing of the Sahelian environment // Int. J. Remote Sens. 1991. V. 12, N 6. P. 1133–1421.
16. Kozoderov V.V., Dmitriev E.V. Remote sensing of soils and vegetation: regional aspects // Int. J. Remote Sens. 2008. V. 29, N 9. P. 2733–2748.
17. Kozoderov V.V., Dmitriev E.V. Remote sensing of soils and vegetation: pattern recognition and forest stand structure assessment // Int. J. Remote Sens. 2011. V. 32, N 20. P. 5699–5717.
18. Li S.Z. Markov random field modeling in computer vision. New York; Berlin; Heidelberg; Tokyo: Springer-Verlag, 1995. 350 p.
19. Kozoderov V.V. Primenenie dannyh opticheskogo distancionnogo zondirovanija dlja izuchenija prirodno-klimaticheskih processov // Klimat i priroda. 2012. V. 3, N 2. P. 3–16.
20. Kozoderov V.V., Dmitriev E.V., Kamencev V.P. Sistema obrabotki samoletnyh izobrazhenij lesnyh jekosistem po dannym vysokogo spektral'nogo i prostranstvennogo razreshenija // Issled. Zemli iz kosmosa. 2013. N 6. P. 57–64.
21. Kozoderov V.V., Kondranin T.V., Dmitriev E.V. Tematicheskaja obrabotka mnogospektral'nyh i giperspektral'nyh ajerokosmicheskih izobrazhenij: Uch. posobie. M.: Izd-vo MFTI, 2013. 225 p.
22. Belov V.V., Tarasenkov M.V. O tochnosti i bystrodejstvii RTM-algoritmov atmosfernoj korrekcii sputnikovyh izobrazhenij v vidimom i UF-diapazonah // Optika atmosf. i okeana. 2013. V. 26, N 7. P. 564–571.
23. Kozoderov V.V., Kondranin T.V., Dmitriev E.V., Kazancev O.Ju., Persev I.V., Shherbakov M.V. Obrabotka dannyh giperspektral'nogo zondirovanija // Issled. Zemli iz kosmosa. 2012. N 5. P. 3–11.
24. Anishhenko A.V., Ogreb S.M., Juhno P.M. Sravnitel'nyj analiz panhromaticheskogo i mnogospektral'nogo rezhimov obnaruzhenija prostranstvennyh ob#ektov // Optika atmosf. i okeana. 2013. V. 26, N 8. P. 673–678.
25. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. N.Y.: Springer, 2001. 765 p.

Back