Vol. 27, issue 04, article # 11

Ivanov N. G., Losev V. F., Panchenko Yu. N., Yastremskii A. G. The influence of gas mixture composition on dissipation of pumping energy in XeF(C–A) amplifier of hybrid femtosecond laser system THL-100. // Optika Atmosfery i Okeana. 2014. V. 27. No. 04. P. 326-331 [in Russian].
Copy the reference to clipboard

Abstract:

By numerical simulations was investigated the effect of the mixture of gases in the XeF(C–A) amplifier hybrid laser system THL-100 on the main channels of energy loss. It is shown that an increase in the buffer gas pressure N2 from 100 to 760 Torr leads to an increase in the fraction of absorbed energy transmitted to the upper laser level XeF(С, v = 0). Increasing the partial pressure of XeF2 causes an increase of energy loss in the process of quenching XeF(B, C) and reduce the energy transferred to the XeF(C, v = 0) state.

Keywords:

numerical simulation, amplification of picosecond laser pulses, the hybrid laser system THL-100

References:

1. Perry M.D., Pennington D., Stuart B.C., Tietbohl G., Britten J.A., Brown C., Herman S., Golick B., Kartz M., Miller J., Powell H.T., Vergino M., Yanovsky V. Petawatt laser pulses // Opt. Lett. 1999. V. 24, N 3. P. 160–162.
2. Aoyama M., Yamakawa K., Akahane Y., Ma J., Inoue N., Ueda H., Kiriyama H. 0:85-PW, 33-fs Ti:sapphire laser // Opt. Lett. 2003. V. 28, N 17. P. 1594–1596.
3. Tae Jun Yu, Seong Ku Lee, Jae Hee Sung, Jin Woo Yoon, Tae Moon Jeong, Jongmin Lee. Generation of high-contrast, 30 fs, 1.5 PW laser oulses from chirp-pulse amplification Ti:sapphire laser // Opt. express. 2012. V. 20, N 10. P. 10807–10814.
4. Tcheremiskine V., Uteza O., Mislavskii V., Sentis M., Mikheev L. Amplification of femtosecond optical pulses in a photolytically driven XeF(C–A) laser amplifier // Proc. SPIE. 2007. V. 6346. 634613, 0277-786X/07/ $18. DOI: 10.1117/12.738132.
5. Aristov A.I., Grudcyn Ja.V., Zubarev I.G., Ivanov N.G., Krohin O.N., Losev V.F., Mamaev S.B., Mesjac G.A., Miheev L.D., Panchenko Ju.N., Rastvorceva A.A., Ratahin N.A., Sentis M.L., Starodub A.N., Ulteza O., Cheremiskin V.I., Jalovoj V.I. Gibridnaja femtosekundnaja lazernaja sistema s vyhodnym usilitelem na jeksimernyh molekulah XeF (C–A) s aperturoj 12х12 sm // Optika atmosf. i okeana. 2009. V. 22, N 11. P. 1029–1034.
6. Alekseev S.V., Ivanov N.G., Koval'chuk B.M., Losev V.F., Mesjac G.A., Miheev L.D., Panchenko Ju.N., Ratahin N.A., Jastremskij A.G. Teravattnaja gibridnaja lazernaja sistema THL-100 na baze fotodissocionnogo XeF(S-A) usilitelja // Optika atmosf. i okeana. 2012. V. 25, N 3. P. 221–225.
7. Alekseev S.V., Aristov A.I., Ivanov N.G., Kovalchuk B.M., Losev V.F., Mesyats G.A., Mikheev L.D., Panchenko Yu.N., Ratakhin N.A. Multiterawatt femtosecond laser system in the visible with photochemically driven XeF(C-A) boosting amplifier // Laser and Particle Beams. 2013. V. 31, N 1. P. 17–21.
8. Mikheev L.D., Stavrovskii D.B., Zuev V.S. Photodissociation XeF laser operating in the visible and UV regions // J. Russian Laser Res. 1995. V. 16, N 5. С. 427–475.
9. Malinovskij G.Ja., Mamaev S.B., Miheev L.D. Moskalev T.Ju., Sentis M.L., Cheremiskin V.I., Jalovoj V.I. Chislennoe modelirovanie aktivnoj sredy i issledovanie istochnika nakachki dlja razrabotki fotohimicheskogo XeF(C–A) usilitelja femtosekundnyh opticheskih impul'sov // Kvant. jelektron. 2001. V. 31, N 7. P. 617–622.
10. Tcheremiskine V.I. Studies of the photodissociation wave formation. Application to the activemedium of the photolytical XeF laser: Ph.D. thesis. University of Aix-Marseille II (1999). URL: http://www.lp3.univmrs
11. Alekseev S.V., Aristov A.I., Grudcyn Ja.V., Ivanov N.G., Koval'chuk B.M., Losev B.F., Mamaev S.B., Mesjac G.A., Miheev L.D., Panchenko Ju.N., Polivin A.V., Stepanov S.G., Ratahin N.A., Jalovoj V.I., Jastremskij A.G. Gibridnye femtosekundnye sistemy vidimogo diapazona na osnove XeF(C–A)-usilitelja: sostojanie i perspektivy // Kvant. jelektron. 2013. V. 43, N 3. P. 190–200.
12. Hay P.J., Dunning T.H. The covalent and ionic states of the xenon halides // J. Chem. Phys. 1978. V. 69, N 5. P. 2209–2220.
13. Helm H., Huestis D.L., Dyer M.J., Lorents D.C. Observation of the C(3/2) ←X(1/2) transition in XeF // J. Chem. Phys. 1983. V. 79, N 7. P. 3220–3226.
14. Black G., Sharpless R.L., Lorents D.C., Huestis D.L., Gutcheck R.A., Bonifild T.D., Helms D.A., Walters G.K. XeF2 photodissociation studies. I. Quantum yields and kinetics of XeF(B) and XeF(C) // J. Chem. Phys. 1981. V. 75, N 10. P. 4840–4846.
15. Bibinov N.K., Vinogradov I.P., Miheev L.D., Stavrovskij D.B. Opredelenie spektral'nyh zavisimostej absoljutnyh kvantovyh vyhodov obrazovanija jeksimerov XeF(B, C, D) pri fotolize XeF2 // Kvant. jelektron. 1981. V. 8, N 9. P. 1945–1952.
16. Brashers H.C., Setser D.W. Transfer and quenching rate constants for XeF(B) and XeF(C) state in low vibrational levels // J. Chem. Phys. 1982. V. 76, N 10. P. 4932–4946.
17. Vaynant R.W. XeF state lifetime and quenching by rare gases and fluorine donors // Appl. Phys. Lett. 1980. V. 64, N 7. P. 493–494.
18. Tramšek M., Žemva B. Synthesis. Properties and Chemistry of Xenon(II) Fluoride // Acta Chem. Slov. 2006. V. 53. P. 105–116.