Vol. 27, issue 03, article # 6

Semenov V.A., Shelekhova E.A., Mokhov I.I., Zuev V.V., Koltermann K.P. The role of Atlantic Multidecadal Variability in formation of seasonal temperature anomalies in the Northern Hemisphere estimated by model calculations. // Optika Atmosfery i Okeana. 2014. V. 27. No. 03. P. 215-223 [in Russian].
Copy the reference to clipboard
Abstract:

Atlantic Multidecadal Oscillation (AMO) is associated with variations of oceanic heat transport in the North Atlantic and the Atlantic Sectors of the Arctic. It has a significant impact on the climate of the Northern Hemisphere (NH). Since 1970s to the early 2000s there has been a positive AMO trend that coincided with the global warming trend. In order to estimate the AMO contribution to the seasonal temperature changes we employ the atmospheric general circulation model (ECHAM5) coupled to a thermodynamics mixed layer ocean model by using anomalous ocean heat convergence fluxes associated with the AMO. Relative contributions of the anomalous heat fluxes in the Atlantic and the Arctic sectors have been estimated. The results show that AMO can explain up to 40% of the observed winter and summer temperature changes over the last three decades. Vertical structure of the AMO-related temperature changes has also much in common with empirical estimates. In particular, the model reproduces the Arctic amplification with maximum temperature trends at the surface in the high NH latitudes. AMO in the model leads to increased probabilities of extreme cold temperatures in February in some regions in Russia. This happens despite increase of the mean temperature. The probabilities increase for hot temperature extremes in July was also found in the European part of Russia. It is shown that the anomalous heat fluxes in the Arctic contribute a major part to the seasonal temperature changes related to the AMO. These fluxes are usually not taken into account when modeling the effect of North Atlantic Multidecadal Oscillation. The results obtained in the study indicate an important role of AMO in formation of weather and climate anomalies.

Keywords:

Atlantic Multidecadal Variability, anomalous climatic regimes, climate models

References:

1. Schlesinger M.E., Ramankutty N. An oscillation in the global climate system of period 65–70 years // Nature (Gr. Brit.). 1994. V. 367, iss. 6465. P. 723–726.
2. Delworth T.L., Mann M.E. Observed and simulated multidecadal variability in the Northern Hemisphere // Clim. Dyn. 2000. V. 16, iss. 9. P. 661–676.
3. Mann M.E., Park J. Global-scale modes of surface temperature variability on interannual to century timescales // J. Geophys. Res. D. 1994. V. 99, iss. 12. P. 25819–25833.
4. Latif M., Roeckner E., Botzet M., Esch M., Haak H., Hagemann S., Jungclaus J., Legutke S., Marsland S., Mikolajewicz U., Mitchell J. Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature // J. Climate. 2004. V. 17, iss. 7. P. 1605–1614.
5. Gulev S.K., Zolina O., Grigoriev S. Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data // Clim. Dyn. 2001. V. 17, iss. 10. P. 795–809.
6. Мохов И.И., Семёнов В.А., Хон В.Ч., Латиф М., Рекнер Э. Связь аномалий климата Евразии и Северной Атлантики с естественными вариациями атлантической термохалинной циркуляции по долгопериодным модельным расчетам // Докл. РАН. 2008. Т. 419, №5. С. 687–690.
7. Мохов И.И., Смирнов Д.А., Карпенко А.А. Оценки связи изменений глобальной приповерхностной температуры с разными естественными и антропогенными факторами на основе данных наблюдений // Докл. РАН. 2012. Т. 443, № 2. C. 225–231.
8. Полонский А.Б. Глобальное потепление, крупномасштабные процессы в системе океан–атмосфера, термохалинная катастрофа и их влияние на климат Атлантико-Европейского региона. Серия «Современные проблемы океанологии». Вып. 5. Севастополь: Морской гидрофизический институт Национальной академии наук Украины, 2008. 44 с.
9. Семёнов В.А. Влияние океанического притока в Баренцево море на изменчивость климата в Арктике // Докл. РАН. 2008. Т. 418, № 1. С. 106–109.
10. Семёнов В.А., Мохов И.И., Латиф М. Влияние температуры поверхности океана и границ морского льда на изменение регионального климата в Евразии за последние десятилетия // Изв. РАН. Физ. атмосф. и океана. 2012. Т. 48, № 4. С. 403–421.
11. Semenov V.А., Latif M., Dommenget D., Keenlyside N.S., Strehz A., Martin T., Park W. The Impact of North Atlantic–Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature // J. Climate. 2010. V. 23, iss. 21. P. 5668–5677.
12. Knight J.R., Folland C.K., Scaife A.A. Climate impacts of the Atlantic Multidecadal Oscillation // Geophys. Res. Lett. 2006. V. 33, iss. 17. DOI: 10.1029/2006GL026242.
13. Sutton R.T., Hodson D.L.R. Atlantic Ocean forcing of North American and European summer climate // Science. 2005. V. 309, iss. 5731. P. 115–118.
14. Sutton R.T., Hodson D.L.R. Climate response to basin-scale warming and cooling of the North Atlantic Ocean // J. Climate. 2007. V. 20, iss. 5. P. 891–907.
15. Zveryaev I.I., Gulev S.K. Seasonality in secular changes and interannual variability of european air temperature during the twentieth century // J. Geophys. Res. 2009. V. 114. D02110. DOI: 10.1029/2008JD010624.
16. Roeckner E., Bäuml G., Bonaventura L., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kirchner I., Kornblueh L., Manzini E., Rhodin A., Schlese U., Schulzweida U., Tompkins A. The atmospheric general circulation model ECHAM 5. Part I: Model description. Hamburg: Max Planck Inst. Meteorol., 2003. 140 р.
17. Meng Q.J., Latif M., Park W., Keenlyside N.S., Semenov V.A., Martin T. Twentieth Century Walker Circulation Change: Data Analysis and Model Experiments // Clim. Dyn. 2012. V. 38, iss. 9–10. P. 1757–1773.
18. Semenov V.A., Latif M., Jungclaus J.H., Park W. Is the observed NAO variability during the instrumental record unusual? // Geophys. Res. Lett. 2008. V. 35, iss. L11701. DOI: 10.1029/2008GL033273.
19. Hurrell J.W., Hack J.J., Shea D., Caron J.M., Rosinski J. A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model // J. Climate. 2008. V. 21, iss. 19. P. 5145–5153.
20. Hansen J., Ruedy R., Glascoe J., Sato M. GISS analysis of surface temperature change // J. Geophys. Res. D. 1999. V. 104, N 24. P. 30997–31022.
21. Kistler R., Kalnay E., Collins W., Saha S., White G., Woollen J., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., Dool H., Jenne R., Fiorino M. The NCEP 50-year reanalysis: monthly means CD-ROM and documentation // Bull. Amer. Meteorol. Soc. 2001. V. 82, N 2. P. 247–267.
22. Graversen R.G., Mauritsen T., Tjernström M., Källén E., Svensson G. Vertical structure of recent Arctic warming // Nature (Gr. Brit.). 2008. V. 451, iss. 7174. P. 53–56.
23. Screen J.A., Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification // Nature (Gr. Brit.). 2010. V. 464, iss. 7293. P. 1334–1337.
24. Мохов И.И., Горчакова И.А. Радиационный и температурный эффекты летних пожаров 2002 г. в Московском регионе // Докл. РАН. 2005. Т. 400, № 4. С. 528–531.
25. Мохов И.И. Особенности формирования летней жары 2010 г. на европейской территории России в контексте общих изменений климата и его аномалий // Изв. РАН. Физ. атмосф. и океана. 2011. Т. 47, № 6. С. 1–8.
26. Petoukhov V., Semenov V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents // J. Geophys. Res. 2010. V. 115, D21111. DOI: 10.1029/2009JD013568.
27. Schar C., Vidale P.L., Luthi D., Frei C., Haberli C., Liniger M.A., Appenzeller C. The role of increasing temperature variability in European summer heatwaves // Nature (Gr. Brit.). 2004. V. 427, iss. 6972. P. 332–336.
28. Мохов И.И. Действие как интегральная характеристика климатических структур: оценки для атмосферных блокингов // Докл. РАН. 2006. Т. 409, № 3. С. 403–406.
29. Мохов И.И., Семёнов В.А., Хон В.Ч., Погарский Ф.А. Тенденции климатических изменений в высоких широтах Северного полушария: Диагностика и моделирование // Лед и Снег. 2013. Т. 122, №2. C. 53–62.

Back