Vol. 26, issue 12, article # 6

Rakhimov R. F., Kozlov V. S., Tumakov A. G., Shmargunov V. P. Optical and microphysical properties of the pyrolysis smoke from measurements by the use of the 4-wavelength polarization spectronephelometer. // Optika Atmosfery i Okeana. 2013. V. 26. No. 12. P. 1045–1053 [in Russian].
Copy the reference to clipboard

Abstract:

Data of polarization spectronephelometric measurements have been used to study the dynamics of optical-microphysical properties of pyrolysis smoke during three days of smoke aging in the Large Aerosol Chamber of IAO SB RAS (1800 m3). The smoke was formed from low-temperature (~ 400°C) decomposition of wood of coniferous trees (pine). The inverse problem was solved to study peculiarities in the disperse composition and the complex refractive index of smoke particles.
A key difference of the microphysics of pyrolysis smokes from mixed regimes of forest biomass burning is the low content of strongly absorbing compounds (black carbon) in ultra-fine particles (radius < 150 nm). As a result, the smokes are weakly absorbing, and the single scattering albedo of dense pyrolysis smoke in the visible spectral region (~ 525 nm) at the stage of smoke formation is close to 1 and decreases after 3-day storage down to only ~ 0.96.
In the size distribution of particles, the medium (~ 400 nm) and coarse (~ 850 nm) fractions are formed. At the smoke aging, the both modes shift toward smaller sizes, and for the aged smoke the medium fraction becomes the main mode in the size spectrum. The pyrolysis smoke, in contrast to mixed smokes, is characterized by the wide size spectrum up to radii of about 1500 nm. As a consequence, the effective radius of pyrolysis particles (~ 400 nm) at the smoke formation is more than twice as large as that of mixed smokes. At the smoke aging, the effective radius decreases from 400 to 170nm.
Stable correlations have been found between the volume coefficients of lidar scattering and extinction, albedo and effective radius of particles. These correlations count in favor of applicability of the single-parameter model of submicron aerosol for the pyrolysis smoke.

Keywords:

pyrolysis smoke, polarization spectronephelometry, inverse problem, particle’s size distribution, complex index of refraction

References:

1. Grishin A.M. Matematicheskoe modelirovanie lesnyh pozharov i novye sposoby bor'by s nimi. Novosibirsk: Nauka, 1992. 408 p.
2. Konev Je.V. Fizicheskie osnovy gorenija rastitel'nyh materialov. Novosibirsk: Nauka, 1977. 237 p.
3. Kondrat'ev K.Ja., Grigor'ev Al.A. Lesnye pozhary kak komponent prirodnoj jekodinamiki // Optika atmosf. i okeana. 2004. V. 17, N 4. P. 279–292.
4. Samsonov Ju.N., Belenko O.A., Ivanov V.A. Dispersnye i morfologicheskie harakteristiki dymovoj ajerozol'noj jemissii ot pozharov v boreal'nyh lesah Sibiri // Optika atmosf. i okeana. 2010. V. 23, N 6. P. 423–431.
5. Kozlov V.S., Panchenko M.V., Yausheva E.P. Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia // Atmos. Environ. 2008. V. 42, N 11. P. 2611–2620.
6. Ajerozol' i klimat / Pod red. K.Ja. Kondrat'eva. L.: Gidrometeoizdat, 1991. 542 p.
7. Rozenberg G.V. Tonkodispersnyj ajerozol' i klimat // Izv. AN SSSR. Fiz. atmosf. i okeana. 1982. V. 18, N 11. P. 92–98.
8. Jacobson M.Z. Strong radiative heating due to the mixing slate of black carbon in atmospheric aerosols // Nature (Gr. Brit.). 2001. V. 409. P. 695–697.
9. Bond T.C., Bergstrom R.W. Light absorption by carbonaceous particles: an investigative review // Aerosol Sci. and Technol. 2006. V. 40, N 1. P. 27–67.
10. Rahimov R.F., Makienko Je.V. Nekotorye metodicheskie dopolnenija k resheniju obratnoj zadachi dlja vosstanovlenija parametrov dispersnoj struktury dymov smeshannogo sostava // Optika atmosf. i okeana. 2010. V. 23, N 3. P. 183–190.
11. Rahimov R.F., Makienko Je.V., Kozlov V.S. Vlijanie kory drevesnyh materialov na optiko-mikrofizicheskie svojstva piroliznyh dymov // Optika atmosf. i okeana. 2010. V. 23, N 5. P. 412–418.
12. Rahimov R.F., Makienko Je.V., Panchenko M.V. Optiko-mikrofizicheskie svojstva smeshannyh dymov ot neskol'kih raznesennyh istochnikov // Optika atmosf. i okeana. 2010. V. 23, N 8. P. 675–684.
13. Rahimov R.F., Makienko Je.V., Shmargunov V.P. Variacii opticheskih postojannyh i spektra razmerov dymovyh ajerozolej, obrazovannyh pri termicheskom razlozhenii raznosortnyh drevesnyh materialov // Optika atmosf. i okeana. 2010. V. 23, N 4. P. 248–258.
14. Rahimov R.F., Kozlov V.S., Shmargunov V.P. O vremennoj dinamike kompleksnogo pokazatelja prelomlenija i mikrostruktury chastic po dannym spektronefelometricheskih izmerenij v smeshannyh dymah // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 887–897.
15. Kozlov V.S., Shmargunov V.P., Tumakov A.G., Panchenko M.V., Rahimov R.F. Uglovoj poljarizacionnyj spektronefelometr APSN-02 dlja izuchenija optiko-mikrofizicheskih svojstv atmosfernogo submikronnogo ajerozolja // Ajerozoli Sibiri. XVIII Rabochaja gruppa: Tezisy dokl. Tomsk: Izdanye IOA SO RAN, 2011. P. 78.
16. Samojlova S.V., Balin Ju.S., Kohanenko G.P., Penner I.Je. Issledovanie vertikal'nogo raspredelenija troposfernyh ajerozol'nyh sloev po dannym mnogochastotnogo lazernogo zondirovanija. Pt. 3. Spektral'nye osobennosti vertikal'nogo raspredelenija opticheskih harakteristik ajerozolja // Optika atmosf. i okeana. 2011. V. 24, N 3. P. 216–223.
17. Bychkov V.V., Perezhogin A.S., Perezhogin A.S., Shevcov B.M., Marichev V.N., Matvienko G.G., Belov A.S., Cheremisin A.A. Lidarnye nabljudenija pojavlenija ajerozolej v srednej atmosfere Kamchatki v 2007–2011 years. // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 87–93.
18. Matvienko G.G., Pogodaev V.A. Optika atmosfery i okeana – neokonchennyj urok vzaimodejstvija opticheskogo izluchenija so sredoj rasprostranenija // Optika atmosf. i okeana. 2012. V. 25, N 1. P. 5–10.
19. Krekov G.M., Matvienko G.G. Razvitie lazernyh tehnologij v probleme distancionnogo zondirovanija atmosfery // Optika atmosf. i okeana. 2010. V. 23, N 10. P. 835–844.
20. Zuev V.E., Krekov G.M. Opticheskie modeli atmosfery. Sovremennye problemy atmosfernoj optiki. V. 2. L.: Gidrometeoizdat, 1986. 256 p.
21. Gorchakov G.I., Emilenko A.S., Sviridenkov M.A. Odnoparametricheskaja model' prizemnogo ajerozolja // Izv. AN SSSR. Fiz. atmosf. i okeana. 1981. V. 17, N 1. P. 39–49.
22. Veretennikov V.V., Kabanov M.V., Panchenko M.V., Fadeev V.Ja. Primenenie odnoparametricheskoj modeli dymki v zadachah lazernogo zondirovanija // Optika atmosf. 1988. V. 1, N 2. P. 25–32.