Vol. 26, issue 07, article # 5

Belov V. V., Tarasenkov M. V. On the accuracy and speed of RTM algorithms for atmospheric correction of satellite images in the visible and UV ranges. // Optika Atmosfery i Okeana. 2013. V. 26. No. 07. P. 564-571 [in Russian].
Copy the reference to clipboard

Abstract:

Algorithms for reconstruction of the Earth's surface reflection coefficient from the data of satellite measurements are suggested. They allow the main components of radiation, forming an Earth's surface image, to be taken into account with different degrees of accuracy. The algorithms involve a solution of the radiative transfer equation with the use of the linear system theory, Monte Carlo method, approximation formulas, and criterion of image isoplanarity. The algorithms are validated based on numerical experiments and comparisons with results of calculations by other authors.

Keywords:

Monte Carlo method, atmospheric correction, radiative transfer equation, re-reflection, adjacency effect, solar haze, spherical geometry

References:

1. Otterman J., Fraser R.S. Adjacency effects on imaging by surface reflection and atmospheric scattering: cross radiance to zenith // Appl. Opt. 1979. V. 18, N 16. P. 2852–2860.
2. Pearce W.A. Monte Carlo study of the atmospheric spread function // Appl. Opt. 1986. V. 25, N 3. P. 438–447.
3. Belov V.V., Borisov B.D., Makushkina I.Ju. Nekotorye zakonomernosti formirovanija pomehi bokovogo podsveta v sistemah videnija // Optika atmosf. 1988. V. 1, N 2. P. 18–24.
4. Protasov K.T., Busygin L.A., Belov V.V. Metod preobrazovanija gistogramm jarkostej i vejvlet-korrekcija atmosfernyh iskazhenij sputnikovyh izobrazhenij // Optika atmosf. i okeana. 2010. V. 23, N 2. P. 136–142.
5. Ruiz C.P., Lopez F.J. A restoring SPOT image using PSF-derived deconvolution filters // Int. J. Remote Sens. 2002. V. 23, N 12. P. 2379–2391.
6. Vermote E.F., Vermeulen A. Atmospheric correction algorithm: spectral reflectances (MOD09). Algorithm Theoretical Background document, version 4.0. 1999. [Электронный ресурс]: http://modis.gsfc.nasa.gov/ /atbd/atbd_nod08.pdf
7. Sei A. Analysis of adjacency effects for two Lambertian half-surfaces // Int. J. Remote Sens. 2007. V. 28, N 8. P. 1873–1890.
8. Reinersman P.N., Carder K.L. Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect // Appl. Opt. 1995. V. 34, N 21. P. 4453–4471.
9. Zuev V.E., Belov V.V., Veretennikov V.V. Teorija sistem v optike dispersnyh sred. Tomsk: Izdatelstvo «Spektr» Instituta optiki atmosfery SO RAN, 1997. 402 p.
10. Belov V.V., Tarasenkov M.V. Statisticheskoe modelirovanie funkcii razmytija tochki v sfericheskoj atmosfere i kriterij vydelenija zon izoplanarnosti izobrazhenij // Optika atmosf. i okeana. 2010. V. 23, N 5. P. 371–377.
11. Lenoble J. Modeling of the influence of snow reflectance on ultraviolet irradiance for cloudless sky // Appl. Opt. 1998. V. 37, N 12. P. 2441–2447.
12. Afonin S.V., Belov V.V., Solomatov D.V. Reshenie zadach temperaturnogo monitoringa zemnoj poverhnosti iz kosmosa na osnove RTM-metoda // Optika atmosf. i okeana. 2008. V. 21, N 12. P. 1056–1063.
13. Belov V.V., Tarasenkov M.V. Statisticheskoe modelirovanie intensivnosti svetovyh potokov, otrazhennyh sfericheskoj zemnoj poverhnost'ju // Optika atmosf. i okeana. 2010. V. 23, N 1. P. 14–20.
14. Belov V.V., Tarasenkov M.V., Piskunov K.P. Parametricheskaja model' solnechnoj dymki v vidimoj i UF-oblasti spektra // Optika atmosf. i okeana. 2010. V. 23, N 4. P. 294–297.
15. Kneizys F.X., Shettle E.P., Anderson G.P., Abreu L.W., Chetwynd J.H., Selby J.E.A. Clough S.A., Gallery W.O. User guide to LOWTRAN_7. ARGL-TR-86-0177.ERP 2010 / Hansom AFB. MA 01731. 137p.
16. Mekler Y., Kaufman Y.J. Contrast reduction by the atmosphere and retrieval of nonuniform surface reflectance // Appl. Opt. 1982. V. 21, N 2. P. 310–316.