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The effect of anisoplanatism on the performance of an adaptive optics system 

intended for imaging of extended objects through the atmospheric turbulence has been 

studied. The main attention has been paid to estimation of the residual error induced 

by anisoplanatism, disregarding other factors degrading the system performance. A 

method for compromise compensation minimizing the residual error of correction has 

been suggested. By expanding phase distortions in a system of Zernike polynomials, 

the contribution of correction for particular aberrations has been evaluated to the 

residual error. An analytical method for evaluating the system performance for an 

arbitrary turbulence spectrum has been developed. Numerical calculations have been 

done for a circular extended area on the object using the Gaussian quadrature 

formulas. The results are presented for the von Karman and Kolmogorov turbulence 

spectra with different values of the outer scale. 
 

1. INTRODUCTION 
 

Analyzing the efficiency of an adaptive optics 
system intended for correction of images, it is usually 
assumed that the angular size of an object is less than 
that of the isoplanatic zone. In a randomly 
inhomogeneous medium, phase distortions of optical 
waves coming from various points of this object can be 
considered identical. Distribution of optical 
inhomogeneites along the path of radiation propagation 
can be obtained by recording phase distortions of a 
reference wave.1 

When the size of an object is greater than that of 
the isoplanatic zone (an extended object), optical paths 
for waves coming from different points of this object 
are different. So phase aberrations acquired by these 
waves differ notably. This effect is referred to as 
anisoplanarity of optical system.2 When recording these 
distortions and compensating for them using a phase 
corrector, considerable difficulties arise due to this 
effect. Complete information on distortions of optical 
waves coming from different points of the object cannot 
be obtained using a single reference source. The 
schematic with several reference sources designed for 
use in astronomy3 can be used to obtain this 
information.  

Next difficulty is that even if the complete 
information on the distortions is available, we  
cannot correct them simultaneously for all points of 
the object. So there are fundamental limitations on 
the size of the object whose image can be corrected 
by a single phase corrector. These limitations are due 
to anisoplanarity of the adaptive optics system 
considering the atmospheric inhmogeneities.  

The present article is devoted to an analysis of 
these fundamental limitations on the quality of phase 
correction disregarding difficulties associated with 
wavefront detection. We assume that the complete 
information about distortions is available.  

It is possible to propose various algorithms for 
correcting the image of an extended object. Wavefront 
corrector can be adjusted using the data of  phase 
distortion measurements for wave coming from a 
reference source placed near the center of the object.1 
In such a system, the image quality is improved only in 
the central region, whereas in peripheral regions the 
image may undergo even greater distortions. In the 
paper, we consider another correction algorithm by  
which the corrector is adjusted to maximize the quality 
criterion allowing for all parts of the object. In this 
algorithm, the RMS phase error averaged with some 
weight over the object is taken as a characteristic of 
distortion.  

This approach is based on the expansion of 
wavefront distortions in a system of Zernike 
polynomials.4 The residual error is evaluated by 
analyzing the behavior of the correlation functions for 
Zernike coefficients.  

 
2. PROBLEM FORMULATION.  

CORRECTION  ALGORITHM  

 

Let us consider an object with angular size greater 
than that of the isoplanatic zone. The object is placed 
at a finite distance from an adaptive optics system and 
is separated from it by a distorting layer of the 
atmospheric turbulence. It is necessary to correct the 
image of an extended region of the object so that to 
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maximize the given quality criterion considering all 
the points of this region. In inhomogeneous media 
optical waves coming from different points of the 
object to the aperture acquire different phase 
distortions. For the distortions of a spherical wave 
coming from a point r′ and observed at a point r in 
the aperture plane, let us introduce a designation 
ϕ(r, r′). Let us also assume that we know these 
distortions. So the mean square residual error of the 
wavefront of this wave is 

 

ε2(r′) = 
1
SA

 
⌡
⌠

SA

 

 d2r 〈(ϕ(r, r′) $ u(r))2〉 , (1) 

 

where integration is performed over the aperture and 
u(r) is the phase profile introduced by a correcting 
mirror.  

Using the expansion of the mirror profile and 
phase distortions ϕ(r, r′) in a system of Zernike 
polynomials,4 we obtain for the residual error  

 

ε2(r′) = ∑
q=0

∞

 
 〈(aq(r′) $ uq)

2〉 , (2) 

 

where uq are the control parameters of the corrector, 
aq(r′) are the coefficients of expansion of phase 
distortions ϕ(r, r′) in the system of Zernike 
polynomials 
 

ϕ(r, r′) = ∑
q=0

∞

 
 aq(r′) Zq(r) . (3) 

 

Let us assume that S′ is the extended area on the 
object surface. (The whole object can be meant by this 
area). As a measure of distortions, let us take the mean 
square phase error 

 

σ2 = 
⌡
⌠

S′
 

 ω(r′) ε2(r′) d2r′ (4) 

 
averaged with the weight ω(r′) over this area. The 
weight ω(r′) that meets the requirement 
 

⌡
⌠

S′
 

 ω(r′) d2r′ = 1  (5) 

 
defines which points are more important in  image 
forming and which are less important. Substituting 
Eq. (2) into Eq. (4), we can observe that different 
aberrations defined by the subscript q yield additive 
contributions to the total mean square error 
 

σ2 = ∑
q

 σ2
q , (6) 

 

where the error of correction for the qth aberration is 
 

σ2
q = 

⌡
⌠

S′
 

 ω(r′) 〈(aq(r′) $ uq)
2〉 d2r′. (7) 

 

Let us pay attention to the fact that Zernike 
coefficients aq(r′) are functions of coordinates of the 
point of the object, whereas the control parameters uq 
that define the surface shape of the flexible mirror are 
independent of these coordinates. The problem arises to 
choose the control parameters from the known (as 
assumed) coefficients aq(r′). Let as take them in such a 
way that the value of the mean square error (Eq. (7))  
be minimum. We obtain that the parameter uq 
minimizing Eq. (7) can be found using the following 
formula:  

 

uq = 
⌡
⌠

S′
 

 ω(r′) aq(r′) d
2r′. (8) 

 
Then the equation describing the error in 

correction of the qth aberration has the form  
 

σ2
q = 〈a2

q〉 $⌡
⌠

S′
 

 

⌡
⌠

S′
 

 ω(r′) ω(r′′) 〈aq(r′) aq(r′′)〉 d
2r′ d2r ′′.  

  (9) 
 

So the algorithm for œcompromiseB correction 
involves the choice of the control parameters using the 
phase perturbations averaged with the weight ω(r′).  
Let us consider the case in which all the points of the 
region S′ are equally important for observations. To do 
so, the function ω(r′) should be chosen in the following 
way:  

 

ω(r′) = 1/S′ . (10) 
 

Equation (4) describing the error and Eq. (8) 
defining the control parameter assume the forms 

 

σ2 = 
1
S′ ⌡
⌠

S′
 

 ε2(r′) d2r′, (11) 

uq = 
1
S′ ⌡
⌠

S′
 

 aq(r′) d
2r′. (12) 

 
Substituting uq from Eq. (12) into Eq. (7) which 

describes the error of the qth aberration,  we obtain 
 

σ2
q = 〈a2

q〉 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1 $ ⎝

⎛
⎠
⎞1

S′

2

⌡
⌠

S′
 

     
⌡
⌠

S′
 

 Kq(r′, r′′) d
2r′ d2r ′′  , (13) 

 
where 
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Kq(r′, r′′) = 
〈aq(r′) aq(r′′)〉

〈a2
q〉

 (14) 

 

is the correlation function of Zernike coefficients for  
different points in the area of observations. Due to 
uniformity of the turbulence, it depends only on the 
relative positions of points on the object. Let us change 
the variables 

 

s = r′ $ r′′,   s1 = (r′ + r′′)/2 . (15) 
 

With these substitutions, Eq. (13) has the form: 
 

σ2
q = 〈a2

q〉 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1 $ ⎝

⎛
⎠
⎞1

S*

2

 
⌡
⌠

S*

 

 Kq(s) d
2s  , (16) 

 

where S* is the area derived from S′ after we have 
made substitutions (15). 

So we have found that the mean square error 
resulting from compromise correction for an extended 
area can be represented through the normalized 
correlation function of Zernike coefficients averaged 
over the area. 

 

3. CORRELATION FUNCTIONS FOR ZERNIKE 

POLYNOMIALS 
 

In the above section  we have obtained the 
equation for the residual correction error through the 
correlation function Kq(s) of Zernike coefficients for  
two spherical waves coming from different points of the 
object to the receiving aperture, where s is the distance 
between the points. B efore analyzing the residual error 
for the specific area, let us consider the  correlation 
functions Kq(s) for different Zernike modes. 

Correlation functions for Zernike coefficients can 
be related to the structure function of phase 
perturbations measured in the aperture plane. In so 
doing, we should exclude the mean phase, i.e., the 
phase shift constant over the whole aperture that does 
not influence the image formation5: 

 

Kq(s) = $ 
1

2π2 〈a2
q〉

 × 

 

×
⌡
⌠

 

    
⌡
⌠

 

 

r1≤1
r2≤1

Zq(r1) Zq(r2) Dϕ(R(r1 $ r2), s) d
2r1 d

2r2, (17) 

 

where R is the radius of the circular aperture,  
integration is performed over a circle with a unit 
radius, and 

 

Dϕ(r, s) = 〈(ϕ(Rr1, r′) $ ϕ(Rr2, r′′))
2〉 (18) 

 

is the structure function for two beams one of them 
coming from the point r′ of the object to the point Rr1 
in the aperture plane and the other coming from the 
point r′′ to Rr2. Due to uniformity of turbulence, the 
structure function depends only on two arguments 

r = R (r1 $ r2),   s = r′ $ r′′. (19) 
 

In the approximation of geometric optics, the 
structure function of the phase for a wave traveled a 
small distance dh can be expressed through the 
spectrum of optical inhomogeneities4: 

 

Dϕ(r
∼
(h)) = 

0.046

r5/3
0 (h) ⌡

⌠
 

    
⌡
⌠

 

 Fn(k) [1 $ exp [i 2π k r
∼
(h)]] d2k,  

  (20) 
 

where 
 

r
∼
(h) = 

h
H

 r + ⎝
⎛

⎠
⎞1 $ 

h
H

 s (21) 

 
is the current distance between the beams at altitude h, 
H is the optical path length, and Fn(k) is the spatial 
spectrum of inhomogeneities. In addition, we 
introduced the designation 
 

1

r5/3
0 (h)

 = 
2.92
6.88

 k2
0 c

2
n(h) dh , (22) 

 

where r0(h) is  œlocalB Fried’s radius, k0 is the wave 

number, and cn
2(h) is the structure constant.  

B elow we  consider two types of the atmospheric 
turbulence spectra, namely, the Kolmogorov spectrum 

 

Fn(k) = k$11/3 (23) 
 
and the von Karman spectrum with the outer 
turbulence scale L0 

 

Fn(k) = k$11/3 ⎣
⎡

⎦
⎤

1 + ⎝
⎛

⎠
⎞1

k L0
 

2 $11/6

. (24) 

 

The inner scale of turbulence considered in the 
Tatarskii spectrum  influences only insignificantly the 
correlation functions of low order Zernike polynomials. 

The structure function of the phase in the aperture 
plane is derived by integration of Eq. (20) over the 
path length 

 

Dϕ(r, s, H) = 
0.046

r5/3
0

 
1

C2
n

 
⌡
⌠

0

H

 

 

⌡
⌠

 

 

⌡
⌠

 

 

cn
2(h) Fn(k) × 

 

× ⎣
⎡

⎦
⎤1 $ exp ⎣

⎡
⎦
⎤i 2π k ⎝

⎛
⎠
⎞h

H
 r + ⎝

⎛
⎠
⎞1 $ 

h
H

 s   d2k dh,  (25) 

 
where 
 

C2
n = 

⌡
⌠

0

H

 
 

 

c2
n(h) dh,  (26) 

 

1

r5/3
0

 = 
2.92
6.88

 k2
0 C

2
n. (27) 
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Substituting Eq. (25) into Eq. (17) and taking the 
Fourier transform of Zernike polynomials, we obtain 
the integral equation for the correlation function 

 

Kq(s) = 

1

〈a2
q〉

 ⎝
⎛

⎠
⎞2R

r0

5/3

4π8/3
 0.046 

1

C2
n

 (n + 1) ($ 1)n$m × 

× 

⌡
⌠

0

H

 
 

 

c2
n(h) 

⌡
⌠

0

∞

 

 

x Fn ⎝
⎛

⎠
⎞x

2π R  

J2
n+1 ⎝

⎛
⎠
⎞x 

h
H

⎝
⎛

⎠
⎞x 

h
H

2  
⎩
⎨
⎧
J0 ⎝
⎛

⎠
⎞

⎝
⎛

⎠
⎞1 $ 

h
H

 x 

s
R

 + 

+  l($ 1)m J2m  

⎭
⎬
⎫

⎝
⎛

⎠
⎞

⎝
⎛

⎠
⎞1 $ 

h
H

 x 

s
R

 cos(2mϕ)  dxdh, (28) 

 

where q ≡ (n, m, l)  is the triple subscript defining 
Zernike mode, Jn(ξ)  is the B essel function of the 
integer order, and s = (s, ϕ) is the vector specifying the 
relative positions of points in polar coordinates. Let us 
note that in this form the correlation function depends 

on the ratio 
s
R

 . So the main parameter of the problem 

is the ratio of the object linear size to the aperture 
radius.  

Let us assume that the structure constant cn
2
 is 

independent of altitude h. Such assumption is valid for  
short propagation paths or for paths (the Z axis) 
parallel  to the  Earth's surface.  

Plots of corresponding correlation functions 
obtained for the Kolmogorov spectrum are shown in 
Fig. 1. It should be noted that the higher is the serial 
number of aberration, the faster is the decrease of the 
correlation function with increasing distance between 
the points. So the small-scale aberrations are more 
sensitive to anisoplanatism. With increasing distance 
between objects, the correlation functions of tilts 
decrease more slowly as compared with aberrations of 
higher orders. Figure 1 illustrates the case in which the 
X axis of the coordinate system defined by Zernike 
polynomials is parallel to the vector s. 

 

 
 

FIG. 1. Normalized correlation functions of Zernike 
coefficients for different aberrations: X-tilt (1), Y-tilt 
(2), Y-astigmatism (3), defocusing (4), X-astigmatism 
(5), and spherical aberration (6). 

4. CORRECTION ERROR FOR IMAGE OF A 

CIRCULAR AREA 

 
In the previous section, we have considered the 

correlation function of Zernike polynomials for  two 
waves coming form two different points of the object 
surface. Let us consider in more detail Eq. (16) 
describing the residual error of correction for image of 
an extended area. We assume that this area is a circle 
with radius R′. Equation (16) can be written in the 
form  

 

σ2
q = 〈a2

q〉 ⎣
⎡

⎦
⎤1 $ fq ⎝

⎛
⎠
⎞R′

R
 , (29) 

 

where 〈a2
q〉 is the mean square error of Zernike 

polynomials independent of the  object shape, 
 

〈a2
q〉 = βq ⎝

⎛
⎠
⎞2 R

r0

5/3

, (30) 

 
βq is the numerical factor defined by the turbulence 
spectrum. Function 
 

fq ⎝
⎛

⎠
⎞R′

R
 = 

1
4 S′ ⌡

⌠

4S′
 

 

Kq(s) d
2
s,    S′ = π R′2,  (31) 

 
is the correlation function of Zernike polynomials 
averaged over the circle. Let us note that  

 

0 < fq ⎝
⎛

⎠
⎞R′

R
 < 1, (32) 

 

so  
 

 

0 < σ2
q < 〈a2

q〉 . (33) 
 
After averaging, we obtain the following equation  
for fq: 

 

fq ⎝
⎛

⎠
⎞R′

R
 , 

L0

R
 = ⎝
⎛

⎠
⎞2 R

r0

5/3

 
1

〈a2
q〉

 0.046 4π8/3 (n + 1) × 

 

× 
⌡
⌠

0

∞

 

 

x$14/3 J2
n+1(x) 

⌡
⌠

0

1

 

 

y5/3 ⎣
⎢
⎡

⎦
⎥
⎤

1 + ⎝
⎛

⎠
⎞2π

 

y

x
 ⎝
⎛

⎠
⎞ 

L0

R

$1 2  $11/6

× 

 

× ⎣
⎡

⎦
⎤

J0 ⎝
⎛

⎠
⎞

2 

1
 

$ y

y
 x 

R′
R

 + J2 ⎝
⎛

⎠
⎞

2 

1
 

$ y

y
 x 

R′
R

 dydx. (34) 

 
It should be noted that after averaging over the 

area symmetric about the center, the dependence on the 
subscript specifying the azimuth component m and on 
the parity subscript l vanished (q = (n, m, l) are 
subscripts specifying Zernike mode).  This means that 
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correlation functions averaged over the circular 
aperture are identical for modes with identical radial 
numbers n. The Kolmogorov spectrum corresponds to 

the case (L0/R)$1 = 0. Functions fq (R′/R , L0/R) 
are shown in Fig. 2 for the Kolmogorov spectrum and 
n = 1, 2, 3, and 4. The higher is the serial number of 
aberration, the faster is the decrease of the 
corresponding correlation function with the increase of 
the radius of the area whose image is formed. So the 
size of the area for which it makes sense to correct the 
small-scale aberrations is less than that for low-order 
aberrations.  

 

 
FIG. 2.  Averaged correlation functions for different 
aberrations in the case of the Kolmogorov spectrum of 
turbulence for n = 1 (1), 2(2), 3(3), and 4(4). 
 

For large areas (R′/R > 10) in the case of the 
Kolmogorov spectrum for the correlation functions 
averaged over the circle we obtained approximate 
formulas. With the approximation by a hyperbola of 

the form fq (R′/R , ∞) ≈ αn (R′/R)$βn in this 
interval, the results are the following:  

 

f1(x) ≈ 1.33/ 
3

x ,  f2(x) ≈ 1.32/x ,  f3(x) ≈ 0.76/x ,  
 

f4(x) ≈ 0.54/x ,   x = R′/R . (35) 
 

These formulas confirm the conclusions drawn 
above. As n increases, the coefficients αn decrease. 
Asymptotic curves for correlation functions of tilts 
(n = 1) differ from those for other aberrations.  

Correlation functions of tilts in the case of the von 
Karman spectrum and different outer scales of turbulence 

are shown in Fig. 3. In the interval L0/R ≈ 102 $ 103, 
aberrations of higher orders are not influenced by the 
outer scale. Having the largest scale, tilts are most 
sensitive to variations of the outer scale of turbulence.  

When the lowest N aberrations are corrected by 
the above-described  algorithm, the total residual error 
of correction for the circular area can be represented as 

 

σ 2
N ⎝
⎛

⎠
⎞R′

R
  = ∑

q=1

∞

 〈a2
q〉 $ ∑

q=1

N

 〈a2
q〉 + ∑

q=1

N

 〈a2
q〉 ⎣
⎡

⎦
⎤1 $ fq ⎝

⎛
⎠
⎞R′

R
  .  

  (36) 
 

 
FIG. 3. Averaged correlation functions of tilts for 
different values of the outer scale in  the case of the 
von Karman spectrum of turbulence. L/R = ∞ (1), 500 
(2), 200 (3), and 100 (4). 
 

The residual error σ 2
N as a function of the number 

of corrected modes is shown in Fig. 4 for areas with 
different size. The error is shown in units of 

Q = (2 R/r0)
5/3, where r0 is Fried’s radius of a plane 

wave. Allowing for the factor 
3
8
, at R′ = 0 all the points 

of the plot coincide with the well-known residual errors 
of correction for aberrations of a plane wave.6 This 
factor appears due to the finite distance between the 
system and the object, so the waves propagating from 
the object are spherical. At R′ = 0 and N = 21, the 
error is equal to 0.01Q.  This value can be taken as 
maximum accuracy for correction. For small objects 
(R′ ≤ 0.25R), the value of the residual error is almost 
the same as for R′ = 0. The difference is no greater then 
0.01Q. So in this case the objects can be considered as 
point-like. As the size of the object increases, correction 
for higher order aberrations becomes inefficient because 
it does not practically change the value of the total 
residual error. For example, for  R′ ≥ 2R the correction 
for aberrations with radial number n = 3 decreases the 
error approximately by 0.001Q, that is,  ten times 
lower than the maximum accuracy of correction. For 
R′ ≥ 5R, the correction for aberrations higher than tilt 
makes no sense because in this region the correction for 
astigmatism and defocusing contributes to the total 
error less than 0.001Q.  

 

 
FIG. 4. Residual error of correction as a function of 
the number of corrected modes N computed for 
different size of the area R′: R′ = 0 (1), 0.25R (2), 
0.5R (3), 2.5R (4), and 5R (5). 
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FIG. 5. Total residual error as a function of the 
aperture radius normalized  by the radius of the area,  
R/R′, computed for different numbers of corrected 
modes: without correction (1) and with correction for  
tilt (2); for tilts, defocusing, and two types of 
astigmatism (3); for all aberrations with radial 
number n = 1, 2, and 3 (4).  

 

To follow the dependence of the total mean square 
error (Eq. (36)) on the aperture radius, let us write the 
error in the following form: 

 

σ 2
N = ⎝

⎛
⎠
⎞2 R′

r0

5/3

 × 

 

× 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

⎝
⎛

⎠
⎞R

R′

5/3

 ∑
q=1

N

 βq ⎣
⎡

⎦
⎤1 $ fq ⎝

⎛
⎠
⎞R′

R
 + ⎝
⎛

⎠
⎞R

R′

5/3

 ∑
q=N+1

∞

 βq  , (37) 

 
where the mean square error is represented in the form 
with explicitly expressed dependence on the aperture 
radius 
 

〈a2
q〉 = (2 R′/r0)

5/3 (R/R′)5/3 βq. (38) 
 

The value of error as the function of the parameter 

(R/R′) is shown in Fig. 5 in units of (2 R′/r0)
5/3 for 

different numbers of corrected modes. Curve N = 0 is 
for a beam without correction, N = 2 is for the 
correction for tilts, N = 5 is for the correction for tilts 
and all aberrations with radial number n = 2 

(defocusing and astigmatism), N = 9 is for the 
correction for all modes with n = 1, 2, and 3. 

 
5. CONCLUSION 

 

To use the potentialities of the adaptive optics 
system, the modified algorithm for control with the 
phase corrector has been proposed to correct the image 
of an extended object. The control parameters are 
chosen allowing for distortions of waves reflected from 
all points of the object. For a particular aberration, the 
residual error is expressed through the correlation 
function of Zernike coefficients for two points of the 
object averaged over the area whose image is formed. 
The error increases monotonically as the size of the area 
increases.  

Applying the theory of wave propagation in a 
distorting medium, the integral equation has been 
obtained which relates the averaged correlation 
function for the coefficients of aberrations with the 
spectrum of the optical turbulence. The averaged 
correlation functions of small-scale aberrations decrease 
with increasing area size faster than those of large-scale 
aberrations. So the modal correction for higher-order 
aberrations makes sense only when the size of the area 
is small. If the area size is five times (or more) larger 
than the aperture radius, the correction for tilts only 
makes sense. Computation of the correlation function 
has been performed for the von Karman spectrum of the 
turbulence with different outer scales. The outer scale 
influences notably the correlation functions of tilts. The 
effect of the outer scale on aberrations of higher orders 
is negligible.  
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