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We discuss here imaging of an object illuminated through a discrete large-

scale random medium.  The effect of correlation between the illuminating and 

return waves passed through the same randomly distributed scatterers on the object 

image is analyzed.  It is shown that correlation of the counter waves can lead to a 

significant enhancement of the coherent component of an optical image and can 

enable us to observe  distant objects in turbid media which are indistinguishable in 

a discrete medium under lateral illumination when no such correlation occurs. 
 

INTRODUCTION 
 
Double passage imaging through a random screen 

as well as through continuous randomly inhomogeneous 
media including such geometry when the object is 
illuminated and viewed from one and the same point 
has been studied in a number of papers.1$3  The 
backscatter enhancement effect caused by the  
correlation of counter waves in the discrete random 
media is also of great interest both as a physical 
phenomenon and from the view point of possible 
applications.  This effect is observed in dense scattering 
media with scatterers of the size comparable to the 
wavelength of illuminating light or less.4  The 
backscatter enhancement effect also takes place in 
rarefied large-scale discrete random media with the 
scatterer size considerably exceeding  the wavelength of  
radiation.4$6  In Refs. 4$6 the backscatter effects are 
considered for the case of depth regime when the 
reflected wave is formed as a result of multiple 
scattering on the discrete inhomogeneities of the 
medium.   

In this paper we consider analogous problem for 
the case when the reflected wave in the large-scale 
discrete random medium is a result of reflection of  
radiation from a reflecting surface.  The influence of  
correlation between the illuminating  and reflected 
waves on the object image in such a medium is 
analyzed. 

 
PROPAGATION OF OPTICAL WAVES ALONG 

THE PATHS WITH REFLECTION IN RANDOM 

DISCRETE MEDIUM 
 
Complex amplitude of an optical wave 

propagating in a discrete medium with randomly 
distributed particles whose size a0 considerably 
exceeds the wavelength λ yields the following 
parabolic equation7  
 

⎣
⎢
⎡

⎦
⎥
⎤

2ik 
∂
∂x′ + Δρ′ $ ∑

j =1

N
 

 
vj (x′, ρ′)  u (x′, ρ′) = 0 , (1) 

 

where k = 2π/λ is the wave number, Δρ = 
⎩
⎨
⎧

⎭
⎬
⎫∂2

∂y2 , 
∂2

∂z2  

is the transverse Laplacian, vj (x, ρ) is the scattering 
potential of the jth particle, N is the number of 
particles.  Let us assume that Eq. (1) describes the 
wave propagation along the Ox′ axis from left to right 
and on the left boundary x′ = x0 the condition 

u (x′, ρ′)
x′ = x0

 = u0(t) is true.  The solution of 

Eq. (1) for an arbitrary plane x′ = x  ≥ x0 is 
 

u (x, ρ′) = ⌡
⌠ 

 
d2t u0(t)G (x, x0; ρ′, t) , 

 

where G (x, x0; ρ′, t) is the Green function of Eq. (1) 
satisfying the equation 
 

⎣
⎢
⎡

⎦
⎥
⎤

2ik 
∂

∂x ′ + Δρ′ $ ∑
j =1

N
 

 
vj (x′, ρ′)  G (x′,x0;ρ′,t) = 0 

 

under boundary condition 
 

G (x0, x0; ρ′, t) = δ(ρ′ $ t). 
 

Assume that the wave is reflected in the plane 
x ′ = x  and the field on the reflecting surface is  

u
R
0(r) = ⌡

⌠ 
 
d2ρ′ u (x, ρ′)O(ρ′,r) 

 

where O(ρ′,r) is the function representing the local 
reflection coefficient.  The complex amplitude of the 
wave propagating backward uR(x′, ρ) satisfies the 
equation 
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⎣
⎢
⎡

⎦
⎥
⎤

$ 2ik 
∂
∂x′ + Δρ $ ∑

j =1

N
 

 
vj (x′, ρ)  uR(x′, ρ) = 0 . (2) 

 

Since Eqs. (1) and (2) are conjugate, the Green 
function GR(x′, x0; ρ, t) of Eq. (2) is related to Green 
function G  by the relation 
 

GR(x ′,x; ρ, t) = G (x, x′; t, ρ) . (3) 
 

This enables us to write the reflected wave field in the 
plane x ′ = x0 in the form 
 

uR(x0, ρ) = ⌡
⌠ 

 
d2t u0(t) × 

 

× ⌡
⌠ 

 
d2ρ′⌡

⌠ 
 
d2r O(ρ′,r)G (x,x0;ρ′,t)G (x,x0;r,ρ) . (4) 

 
In what follows, for the analysis of coherent optical 
images we will need the second statistical moment of 
the reflected wave field in the plane x′ = x0 
 
ΓR(x0;ρ1,ρ2) = < u R(x0, ρ1) u R*(x0, ρ2) > , 
 
where <...> denotes averaging over an ensemble.  
When we calculate the statistically average fluctuations 
of the medium parameters, we shall assume that the 
parameters of the initial field, and the  
 

local reflection coefficient, which can also be random, 
are statistically independent.  Thus, according to 
Eq. (4) the mutual coherence function ΓR is given by 
 

ΓR(x0;ρ1,ρ2) = ⌡
⌠ 

 
d2t1,2< u0(t1)u0*(t2) > × 

 

× ⌡
⌠ 

 
d2ρ′1,2⌡

⌠ 
 
d2r1,2< O (ρ′1,r1)O *(ρ′2,r2) > × 

 

× < G (x, x0; ρ′1, t1)G *(x, x0; ρ′2, t2) × 
 

× G (x, x0; r1, ρ1)G *(x, x0; r2, ρ2) > . (5) 
 

Consequently, to calculate the second moment of 
the reflected wave field, the fourth moment of the 
Green function of Eq. (1) describing the wave 
propagation along the direct path ought to be known.   

We shall assume that positions of the particle 
centers rj in the medium are distributed uniformly and 
the probability for N particles being in the volume V is 
determined by the Poisson law.  It can be shown8 that 
the propagating wave field in this case can be 
considered as Gaussian one because of the central limit 
theorem.  A closeness of the distribution law of field 
complex amplitude to the normal one for the optical 
thickness τ > 1 is also confirmed  by the experimental 
data for laser beam propagation through precipitation.9  
That allows us to use the following approximation in 
Eq. (5)   

 

<G(x, x0; ρ ′
1
, t1)G*(x, x0;  ρ ′

2
, t2)G (x, x0; r1, ρ1)G*(x, x0; r2,  ρ2)  > ≈ 

 

≈ <G(x, x0; ρ ′1, t1)G*(x, x0; ρ ′2, t2)> <G(x, x0; r1, ρ1)G*(x, x0; r2, ρ2)> + 
 

+ <G(x, x0; ρ ′1, t1)G*(x, x0; r2, ρ2)> <G(x, x0; r1, ρ1)G*(x, x0; ρ ′2, t2)>.   (6) 
 

The condition a0 >   > λ and the use of the 
parabolic equation (1) means that the field scattered by 
particles along directions in the back half-plane is zero.  
Therefore, the order of wave scattering (forward) by N 
particles  does not exceed N and the particles can be 
considered as amplitude$phase screens7 owing to the 
inequality a0/L <   < 1, where L = x $ x0.  The 
complex of these conditions enables us to propose the 
δ$correlation of fluctuations of the discrete random 
medium along the direction of wave propagation and 
the use of diffuse approximation10 to derive equations 
for the statistical moments of the field complex 
amplitude in such a medium7. 

According to Ref. 7, for the second moment of the 
Green function in Eq. (6) we have 

 

⎩
⎨
⎧

⎭
⎬
⎫

2ik 
∂
∂x′ + (Δρ1 $ Δρ2) + αc[2s $ F (ρ1 $ ρ2)] × 

 

× < G(x′, x0; ρ1, t1)G*(x′, x0; ρ2, t2) > = 0 , (7) 
 

where αc = 2ikc, c is the particle number density, 

s = ⌡
⌠ 

 
d2ρ < S (ρ) > is the mean square of a particle 

projection (shadow) on the plane x = const, S (ρ) is 
the shadow characteristic function (equal to unity 
within the shadow and to zero out of it), 

F (ρ) = 
1
s⌡
⌠ 

 
d2ρ′ < S (ρ′)S (ρ $ ρ′) > is the shadow 

autocorrelation function.  We assume that in the 
functions s and F averaging is carried out over the 
particle dimensions and orientation.   

The solution of Eq. (7) has the form7   
 

<G(x, x0; ρ1, t1)G*(x, x0; ρ2, t2)> = 
 

= ⎝
⎛

⎠
⎞k

2πL

2

exp
⎩
⎨
⎧

⎭
⎬
⎫ik

2L
 [(ρ1$t1)2 $ (ρ2 $ t2)2] × 

× exp 

⎩
⎨
⎧

⎭
⎬
⎫

$τ + 

τ
2

 

⌡⌠
0

1
 

 

dξF[ξ(ρ1 $ ρ2) + (1 $ ξ) (t1 $ t2)]  ,  

  (8) 
 

where τ = 2csL is the optical thickness.  
The derived expression (8) is of the same form as 

that for a turbulent medium10 except for the additional 
term in the second exponent which describes the wave 
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intensity attenuation due to scattering by particles and 
for the form of the medium function F.   

 
OPTICAL TRANSFER FUNCTION OF A DISCRETE 

RANDOM MEDIUM FOR THE PATH WITH 

REFLECTION 

 
The mean intensity distribution over the object 

image < It (l,ρ″) > and the function ΓR are related by 
the following equation11   

 

< It (l,ρ″) > = ⌡
⌠ 

 
d2ρ1,2T (ρ1)T (ρ2) × 

 

× ΓR(x0;ρ1,ρ2)exp 
⎩
⎨
⎧
 
ik

2l
 ⎝
⎛

⎠
⎞1 $ 

l

Ft
  × 

 

× (ρ1
2 $ ρ2

2) $
⎭
⎬
⎫

 
ik

l
 (ρ1 $ ρ2)ρ″  (9) 

 
where T(ρ) is the amplitude coefficient of the 
receiving  lens with the focal length Ft , l is the 
distance from the lens entrance pupil to the image 
plane.   

In the particular case of a diffusely scattering 
object 

 

< O (ρ′1,r1)O *(ρ′2,r2) > = 
4π
k2 < A (r1)A *(r2) > × 

 
× δ(r1 $ r2)δ(ρ′1 $ r1)δ(ρ′2 $ r2) (10) 
 
where A (r) is the amplitude factor, δ(ρ) is the Dirac 
delta function, and incoherent light  
 

< u0(t1)u0*(t2) > = 
4π
k2 I0(t1) δ(t1 $ t2) 

 
where I0(t) is the intensity at the point t, the 
expression (9) may be interpreted using the concept of 
the optical transfer function (OTF).   

If we introduce the spatial spectrum of the object 
 

I
 ~

ob(ω) = ⌡
⌠ 

 
d2r < A (r)A *(r) >exp ⎝

⎛
⎠
⎞$ 

il

L
 ωr  

 

and functions 

H0(ω) = ⌡
⌠ 

 
d2ρ T (ρ)T ⎝

⎛
⎠
⎞ρ $ 

l

k
 ω  , 

 

H (x,0;0,ω) = exp 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

$ τ + 
τ
2
 ⌡
⌠

0

1
 
 
dξ F ⎝

⎛
⎠
⎞ξ 

l

k
 ω  , 

 

then from Eq. (9) for the spatial spectrum of the object 

image < It
~
 (l,ω) > taking into account only the first 

term in Eq. (6) we find the following expression  
 

< I
 ~

t (l,ω) >1 = ⎝
⎛

⎠
⎞k

2πL

4

 IΣ I
 ~

ob(ω) H0(ω) H(x, 0; 0, ω)  (11) 

 

where IΣ = ⌡
⌠ 

 
d2t I0(t) . 

The expression (11) is nothing but the spatial 
spectrum of the diffuse object image in a scattering 
medium, and the functions H0(ω) and H (x, 0; 0, ω) 
have the meaning of optical transfer functions of the 
receiving optical system and the medium, respectively.   

By making similar calculations in Eq. (9) with the 
use of the second term in Eq. (6) we obtain 

 

< I
 ~

t (l,ω) >2 = ⎝
⎛

⎠
⎞k

2πL

4

 I
 ~

ob(ω) Φ(ω) , (12) 

 

where 
 

Φ(ω) = ⌡
⌠ 

 
d2ρ T(ρ)T⎝

⎛
⎠
⎞ρ $ 

l

k
 ω  Hco(ρ,ω) , 

Hco(ρ,ω) = ⌡
⌠ 

 
d2t I0(t) × 

× H ⎝
⎛

⎠
⎞x, 0;  0,t $ ρ + 

l

k
  ω H (x, 0; 0, ρ $ t)   . 

 

By analogy with the Eq. (11), the function Φ(ω) can 
be considered as a combined optical transfer function of 
the optical system and the scattering medium.  It is 
impossible to separate out the contributions coming 
from the medium and the optical system into the 
distortions of the object image in this case.   

By adding the expressions (11) and (12) we obtain 
that the spatial spectrum of the object image is 
presented as the product of the object spatial spectrum 
by the optical transfer function 

 

HΣ(ω) = H0(ω)H (x,0;0,ω) + IΣ
$1 Φ(ω) (13) 

 

involving two terms.  The first term coincides with the 
OTF for the diffuse object and describes the optical 
image distortions caused by diffraction on the elements 
of optical system and wave scattering by the medium 
inhomogeneities along the path from an object to 
receiver.  The second term owes its origin to the double 
passage of optical wave through the same random 
scatterers of the medium when propagating in the 
forward and backward directions.  As a result, the 
correlation between the  illuminating  and reflected 
waves occurs.  Allowance for the first term only in 
Eq. (13) means that the illumination source and 
receiving telescope are considerably spaced.   
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COHERENT IMAGE OF A POINT OBJECT IN A 

SCATTERING MEDIUM 
 

Let us assume that a point (distant) object with 
the reflection coefficient 

 

O (ρ′,r) = 
4π
k2 δ(ρ′)δ(ρ′ $ r) , (14) 

 

is illuminated with a coherent optical radiation  
 

u0(t) = u0 exp ⎝
⎛

⎠
⎞$ 

t2

2a2 $ 
ikt2

2F
 , (15) 

 

where a and F are the radius and focal length of a 
coherent beam.  As discrete scatterers we take the 
spherical particles with the radius a0.  For such 
particles the shadow autocorrelation function has the 
following form12 

 

F (ρ)=

⎩⎪
⎨
⎪⎧2

π
 
⎣
⎡

⎦
⎤

arccos 
 ρ 

2a0
 $ 

 ρ 

2a0
 1 $ ( ) ρ 

2a0

2

 for  ρ = ρ  ≤ 2a0 ,

0 for  ρ > 2a0.

 

 

Having used Eqs. (9), (5), (6), (8), (14), and (15), 
for the mean intensity of the image we obtain 
 

< It (l, ρ″) > = < It (l, ρ″) >1 + < It (l, ρ″) >2 , (16) 
 

where 

< It (l,ρ″) >1 = ⎝
⎛

⎠
⎞2

πkl

2

 Ω Ωt
3 ⌡
⌠ 

 
d2t ⌡

⌠ 
 
d2ρ × 

 

× exp 
⎩
⎨
⎧
$
 
 
Ωt Ω$1 i i* t 2 $ it it* ρ2 $ 

 

$ 2iρρ
∧

″ $ 2τ + 
τ
2
 ⌡
⌠

0

1

 
 
dξ [F ( p (1 $ ξ) t ) + 

 

⎭
⎬
⎫

+
 

F(p(1
 
$ ξ) ρ )]  , (17) 

 

< It (l,ρ″) >2 = ⎝
⎛

⎠
⎞4

πkl

2

 Ω2 Ωt
2 × 

 

× exp ⎣
⎡

⎦
⎤

$ 
(1 + Ωt /Ω)ρ

∧

″2

(1 + Ωt /Ω)2 + it it* $ 1
 $ 2τ  × 

× (i* + Ω Ωt
$1
it)$1

⌡
⌠ 

 
d2t exp ⎣

⎡$ (α
 
+
 
i γ)t 2 $ 

$i(β $ i θ)tρ
∧

″ + 
τ
2
 ⌡
⌠

0

1

 
 
dξ ⎦

⎤ 
 
F (p (1 $ ξ) t )  

2

 , (18) 

 

Ω = ka2/L and Ωt = ka
2
t/L are the Fresnel numbers of 

the illuminating and receiving apertures, respectively.  
The transmission coefficient of the receiving aperture is 
taken in a Gaussian form with the  

effective radius at ; i = 1 + iΩ(1 $ L/F), 
 

it = 1 + iΩt(1 + L/l $ L/Ft); ρ̂″ = ω0 ρ″, ω0 = kat/l;  
 

α = 2p1/N; β = 2p2/M; γ =2p3/N; θ = $ 
2Ωp4

Ωt M
 ; 

 

N = p2
1 + p2

3; M = p2
2 + p2

4, p = at/a0, p1 = Ω/(Ωtii*) + 

+ (it i
*
t)$1, p2 = 1 + 

Ω[1 + (i $ 1)(it $ 1)]
Ωtii*

 , 

p3 = 
i(1 $it)

iti
*
t

 $ 
iΩ(1 $i)

Ωtii
*

 , p4 = 
i(i + it $ 2)]

ii*
 .  

The first term in Eq. (16), < It >1, describes the mean 
intensity distribution over the point object image on an 
uncorrelated path, the second one < It >2 takes into 
account the correlation between the illuminating and 
reflected waves.   

It follows from Eqs. (17) and (18) that in the lens 
focal plane (l = Ft), at the point ρ″ = 0 we have 
< It (Ft, 0) >1 = < It (Ft, 0) >2 under the condition of 
matching the receiving and illuminating apertures 
(Ω = Ωt).13 

The approximation (6) requires the condition 
τ > 1 to be satisfied. Therefore, it is useful to analyze 
the obtained expression for τ >   > 1.  In this case we 
can use an approximate expression14 

 

exp 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

$ τ + 
τ
2
 ⌡
⌠

0

1

 
 
dξ F (p (1 $ ξ) t )  ≈ 

≈ exp($ τ) + exp 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

$ τ + 
τ
2
 ⌡
⌠

0

1

 
 
dξ F (p (1 $ ξ) t )  . 

 
Then the first term in Eq. (16) can be presented in the 
form 
 
< It (l,ρ″) >1 = Ico(l,ρ″) + Iinc(l,ρ″) . (19) 
 
Here 
 

Ico(l,ρ″) = ⎝
⎛

⎠
⎞2

kl

2

 
Ω2 Ωt

2

i
2
it

2
 exp ⎣

⎡
⎦
⎤

$ 2τ $ 
ρ
∧

″2

iit
    (20) 

 

is the coherent component of the mean intensity 
distribution in the object image.  This component has 
the same form as that in the case of a homogeneous 
medium except for Bouguer attenuation coefficient for 

the double path length e$2τ.  The incoherent component 
of the intensity distribution Iinc describes the image 
distortions due to multiple scattering of the wave by 
the discrete random inhomogeneities of a medium.   

It is evident that the distribution width of the 
coherent component is determined by diffraction on the 
receiving telescope aperture and is 

 

δco = ⎣
⎡

⎦
⎤1 + Ωt

2
⎝
⎛

⎠
⎞1 + 

L

l
 $ 

L

Ft
 

2

 
1/2

ω0
$1 . 
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To estimate the distribution width of the incoherent 
component Iinc, we used the approximation of the 

function F (p (1 $ ξ) t ) in the form 

 

F (p (1 $ ξ) t ) ≈ 
1
2
 exp [$4p 2(1 $ ξ)2t 2] . 

 
Then for Iinc we have  
 

Iinc(l,ρ″) = ⎝
⎛

⎠
⎞2

kl

2

 × 

 

× 
Ω Ωt

3

⎝
⎛

⎠
⎞Ωt i

2/Ω + 
2
3
 p2τ ⎝

⎛
⎠
⎞

iit* + 
2
3
 p2τ

 × 

 

× exp 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

$ τ $ 
ω0

2ρ̂″2

iit* + 
2
3
 p2τ

  , (21) 

 
from which it follows that the distribution width of the 
incoherent component under the condition 
p = at /a0   >>   1 is 
 

δinc ~ ⎝
⎛

⎠
⎞2

3
 p2τ

1/2

ω0
$1 >> δco. 

 
For the discrete scatterers whose characteristic 

dimensions are from 10$6 m to 10$3 m (clouds, fogs, 
hydrometeors etc.) the condition p   >>   1 is fulfilled 
practically always.   

Thus, the mean intensity distribution over the 
image of a distant (point) object on the uncorrelated 
path consists of a narrow œpeakB Ico(l, ρ″) of the width 
δco and wide œpedestalB Iinc(l, ρ″) of the width δinc.  
Figure 1 depicts the results of calculation 
< It (l, ρ″) >1 (curve 1) for the concrete parameters of 
the transmitter$receiver and a medium by formulas 
(16)$(18).  All values of the image mean intensity in 
the figure along the ordinate are normalized to the 
corresponding maximum values of the < It (l, 0) >1 at 
the point ρ″ = 0.  It follows from the calculations by 
Eqs. (16)$(18) that relative contribution of the 
components Ico and Iinc into the mean intensity 
< It (l, ρ″) >1 varies depending on the optical 
thickness τ.  So, Figures 1b and c show (curve 1) that 
at τ = 5 the intensity < It (l, ρ″) >1 practically 
coincides with its coherent component Ico(l, ρ″) and 
contribution of Iinc equals zero (Fig. 1b), at the same 
time for τ = 25 (Fig. 1c) the main contribution into 
< It (l, ρ″) >1 comes from the component Iinc(l, ρ″). 

-5.0 -2.5 0.0 2.5
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1.0

1.5
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ρ " ω
0

< I  
t
 >

0

1

2

 
a 
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t
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0

1

2

 
b 
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0.5

1.0
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ρ " ω
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< I
t
>

1

2

 
c 

 

FIG. 1. Intensity distribution over the image of the 

point object in the plane 1 + 
L

l
 $ 

L

Ft
 = 0 for 

Ω = Ωt = 1, p = 100, τ = 15 (a), τ = 5 (b), τ = 25 (c). 
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Contribution of the term < It (l, ρ″) >2 into the 
intensity distribution of a point object responsible for 
the correlation between the illuminating and reflecting 
waves is shown in Figure 1 by curves with open circles.  
It is clear from this curves that width of the 
distribution < It (l, ρ″) >2 is of the order of δco.  
Maximum amplitude < It (l, 0) >2 for small optical 
thickness (Figs. 1a,b) is comparable to and for large 
optical thickness (Fig. 1c) essentially exceeds the 
amplitude of the coherent component of the image 
intensity for the case of uncorrelated path.  The total 
intensity of the image of a point object on a correlated 
path < It (l, ρ″) > is depicted in Fig. 1 by curves 2.   

Thus, the counter wave correlation leads to 
œenhancementB of the coherent component of the 
distant object image in a discrete random medium.  
This increases the contrast of images and can allow us 
to observe objects in turbid media which are 
indistinguishable without illumination or with lateral 
illumination when no correlation between the incident 
and reflected waves occurs.  
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