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In this paper we present algorithm for reconstruction of intensity distribution 

over a laser beam cross section from the noisy temperature field of a thin target. 

The regularizing FFT algorithm consistent with the noise in the initial data and 

allowing the calculation time to be significantly reduced  when processing great 

bulk of the initial data is used for suppressing the noise of temperature 

measurements. 
 

High-power laser beam undergoes distortions due 
to heating the air owing to molecular absorption what 
results in formation of a diverging lens. In that case, 
use of a metal target is the only way to measure 
intensity of a beam close to destruction and nonlinear 
distortion thresholds.  Interaction of radiation with the 
target forms its surface temperature field. Given the 
relationship between intensity and temperature of a 
target surface one can follow the dynamics of the 
intensity of incident laser beam in its cross-section (see 
Fig. 1).  

 

 
 
 

FIG. 1.  Geometry of the problem 
 

The relationships between the intensity I(ρ, t) and 
temperature on the target surface T(ρ, t) have been 
derived1$3 in terms of heat flux q(ρ, t) reconstructed 
using the temperature (ignoring heat losses, 
q(ρ, t) = (1 $ R) I(ρ, t), here R is the reflection 
coefficient).  The target was considered to be limited in 
the transverse direction and infinite in its longitudinal 
dimension.  The expressions were derived for different 
boundary conditions on the opposite target surface.  

Let us write expressions assuming that the initial 
temperature at the plate surface is equal to zero 
(Š(0, ρ, 0) = TH = 0): 

a) The back surface of the plate is kept at a 
constant temperature (cooled target, T(L, ρ, t)=0). 
According to Ref. 2, we can write the following 
equations: 
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Here k and a2 are the coefficients of heat and 
temperature conductivity, respectively; L is the plate 
thickness; t is time; ρ = {x, y} is the transverse 
coordinate;  
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is the Jacobi ϑ-function (see Ref.4). 
b) If the back surface is thermally insulated 
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temperature of the target surface and the light flux 
takes the following form: 
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where θ(t) is the generalized Heaviside step-wise unit 
function, δ(t) is the generalized Dirac function.  
Substituting  these functions into Eqs. (1) and (2) and 
having in mind the following expressions: 
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we obtain the relationship between the intensity and 
the flux at the surface of a thin target in the case of 
thermally insulated and cooled back surface  to be  
written as: 
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respectively. Here Δ⊥ = 
∂
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Laplacian.  
From the temperature field Š(ρ, ti) recorded 

within  a time interval t = {0, tmax} in time steps 
Δt = tmax/M (see Fig. 2) and using Eqs. (3), (4) one 

can reconstruct the intensity I
l(ρ) = I(ρ, tl) at the 

same moments in time (tl = l Δt, l = 1, M).  In this 
manner a set of M frames of the temperature field 
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the transverse dimensions of the target) over the target 
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temperature field has transverse resolution of 100×100 
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the data set on temperature is equal to 

N
2 
M = 100 × 100 × 24 = 240 000. This dimension 

provides the initial data for processing to be very 
laborious. Therefore, we choose  the algorithm of fast 
Fourier transform (FFT) to solve Eqs. (3) and (4) 
which provides a reduction of the number of 
manipulations in the data processing.  Thus, using 
discrete  Fourier transform over spatial coordinate (see 
Refs. 7, 8) and  differential analog instead of 
differentiation with respect to time, one can write 
Eqs. (3) and (4) in the following form:  
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are discrete Fourier transforms of the flux and the 

temperature, respectively; qlmj = q(xm, yj, tl). 
 

 
FIG. 2. The temperature field variation versus time. 
 

It should be pointed out that temperature is a 
measured parameter and, hence, measurement error 
inevitably introduces distortion into the intensity to be 
reconstructed due to the use of differentiation in 
Eqs. (3) and (4). In our case, this distortion manifests 
itself in unstable summation of Fourier series because 
the error in the initial data enhances the error in 
definition of the expansion coefficients. Therefore, 
when processing experimental data (see Refs. 9, 10) it 
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is advisable to apply filtering of the initial data by 
their convolution over every coordinate with a 
stabilizing function, for instance, with the sinc-
function: 

 

sinc (x) = [sin(imax x)]/(πx).  
 

Here  imax is a maximum spatial frequency.  
The factors of this sort set a limit on the spectrum 

thus cutting off high-frequency noise component. The 
use of these filters being well founded owing to simple 
algorithm structure is possible only in  special case 
when the absence of pulsed objects with the separation  
less than 2h (here h is the discretization step) is a 

priori known. Otherwise, œoversmoothingB of the image 
is evident and its processing is performed in a dialogue 
regime. This regime makes it possible to choose the best 
factor, but significantly moderates processing of great 
bulk of the initial data.  

To automate the selection of optimal filter 
correlated with errors in the initial data, we  use 
variation  principle of selection of possible solutions 
based on minimizing of smoothing Tikhonov functional 
(see Refs. 11, 12) in the following form:  
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Substitution of the expression for temperature in 
the FFT form (8) into Eq. (9) and  use of  Plansherel 
theorem give: 
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Thus we obtain the following FFT coefficients stable to 
the noise : 
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Note that the value of parameter α should correlate 
with the error in the initial data. Therefore, that αn  
value is taken as required for the following equality 
holds to a preset accuracy: 
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where σ2  is the variance of the noise in the initial 
data. 

Estimation of the parameter α is a simple task 
since  it can be shown (see Refs. 13, 14) that the 
function δ2(α)=γ(β) is the falling off  and down convex 
function of β, where β=1/α. Therefore, the method of 
Newton tangents can be used to find the root of the 
following nonlinear equality: 
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In this paper, the algorithm of reconstruction of 
laser beam intensity from a noisy temperature field of a 
thin target on the base of fast Fourier transform is 
presented. This algorithm provides for reduction of 
manipulations and calculation time when processing 
large bulk of the initial data. We succeeded in finding 
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the regularization factors for every term of the series 
using a priori information on limitation of the second 
derivative and thereby in regularizing FFT series which 
are stable to the initial data noise and automating the 
search of regularization parameter  correlating with the 
noise. In the second part of the paper, we are planning 
to apply the algorithm to process the results of 
numerical calculations and bench experiments.  
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