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In this paper we present numerical investigation into the problem on 

deformations and oscillations of the drop surface under the action of pondermotive 

force induced by an intense light field. The simulations have been done for a 

variety of drop size.  As a result, it is shown that in small droplets the 

deformations are induced across a laser beam while being induced along the beam 

in big drops.  We also show in this paper that inhomogeneities of the optical field 

in big drops may produce strong local perturbations of the surface. 
 

INTRODUCTION 

 
It is known that the volume and surface 

pondermotive forces act on a dielectric placed in the 
electromagnetic field.1  This phenomenon can lead to 
some nonlinear effects at the interaction of an intense 
laser radiation and weakly absorbing particles.  The 
effect of stimulated Mandelshtam-Brillouin scattering 
(SMBS) occurring due to excitation of acoustic waves 
in a droplet volume is the most important among them.  
Excitation of the surface (capillary) waves in droplets 
was investigated theoretically and experimentally in a 
number of papers.4,7,8  The aforementioned surface 
effect can initiate the destruction of aerosols4,8 or cause 
the surface Raman scattering of light.5,6  It is necessary 
to take it into account when analyzing the threshold 
conditions of excitation of the stimulated Raman 
scattering (SRS) and SMBS connected with the 
resonance properties of transparent spheres.13,14  The 
study of laser excitation of disturbances of the droplet 
surface is of practical interest for the problems of 
atmospheric optics.12  However, it was solved in the 
theoretical papers cited above only for particles of a 
narrow size range, namely, for small particles.  This 
fact does not allow one to apply the results of such 
investigations to the particles of arbitrary size. 

The main goal of this paper is to solve the problem 
on excitation of capillary waves on the surface of liquid 
droplets of arbitrary size under the action of laser 
radiation of different intensity. 

 
BASIC RELATIONSHIPS 

 
General statement of the problem on deformations 

of a transparent droplet in the light field includes the 
hydrodynamical equations of the viscous incompressible 
liquid2 written taking into account the pondermotive 
forces 
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 + (v∇)v = νΔv – (1/ρ) (∇p – fE),   div v = 0, (1) 

 

where t is time; v, p, ρ, η and ν = η/ρ are the 
velocity, pressure, density, dynamical viscosity and 
kinematic viscosity of the liquid, respectively.  Volume 
density of the pondermotive forces is determined by the 
relationship1: 
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ε is the dielectric constant of the liquid, E is the 
strength of the electric field inside the particle, and T 
is temperature. 

The kinematic boundary condition on the free 
surface of a droplet, relating the deformation to 
velocity, is expressed as follows2: 
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 + v∇F = 0.  (3) 

 

Boundary condition for tensions on the surface, 
i.e. the dynamic boundary condition, is given in the 
form2 
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Here F(r1, t) = 0 is the equation of the deformed liquid 
surface; r1 is the radius-vector of a point of the 
perturbed surface; p1 is the external (atmospheric) 
pressure; α is the surface tension coefficient of the 
liquid; R1 and R2 are the main radii of the surface 
curvature; n is the external normal to the droplet 
surface; xi are the coordinates; and 
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f = 
ε – 1
8π  [(ε – 1) (En)2 + E2] 

 

is the jump of the normal component of the 
electromagnetic field strength on the liquid surface.1  
One should take into account, in Eqs. (1) and (4), 
only low frequency components relative to the 
frequency of the incident light field. 

The statement of the problem in the integral form 
on hydrodynamical effects in nonabsorbing liquid 
particle in the intense light field is based on the energy 
conservation law. It is known that the change of kinetic 
energy in the field of mass forces is given by the 
expression2 
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Here σ is the viscous tension tensor; V is the volume, S 
is the deformed liquid surface; dS = ndS. 

Subsequent study will be performed under 
conditions of small deformations of the surface of 
weakly viscous incompressible liquid.  The condition of 
small deformations means that ⏐ξ⏐ = ⏐r1 – r0⏐ << 1, 
where r0 is the vector of the point on nonperturbed 
droplet surface; ξ is the vector of the surface 
displacement.  The flow inside the droplet can be 
considered as potential in a low viscosity approximation 
(∇×v = 0).  The exception is the boundary layer area 
with the thickness 
 

lb = r0(Re)
–1/2

, 
 

where r0 = |r0| is the droplet radius and Re is the 
Reynolds number.2 The velocity of liquid for the 
potential flow has the form 
 

v = ∇Φ, 
 

and the vector of the displacement of the droplet 
surface is 
 

ξ(θ, ϕ) = ⌡⌠
0

t

 
 ∇Φ dt′, 

 

where Φ is the velocity potential, satisfying the Laplace 
equation in the case of incompressible liquid 
 

ΔΦ = 0. 
 

Under the conditions when lb << r0, all terms in 
Eq. (5) can be determined based on the ideal liquid 
flow approximation.  This is possible, because the 
velocity and its derivatives for the flow of liquid with 
free surface do not vary significantly in the boundary 
layer.2 Thus, when calculating the corresponding 
volume integrals in Eq. (5) one can ignore the 

difference between velocities and their derivatives in 
the vortex flow area and in the area of the ideal liquid 
flow in the case of the small size area.  The correct use 
of the potential flow approximation for calculating the 
surface integral in Eq. (5) is provided by the condition 
of small deformations of the droplet surface. 

The sum of the inverse radii of the droplet surface 
curvature for small displacements can be presented in 
spherical coordinates as follows2,10: 
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ξ = ⏐ξ⏐; r, θ and ϕ are the spherical coordinates. 
Thus, taking into account the boundary conditions 

(4), within the framework of the assumptions 
performed, one obtains the following boundary 
condition from Eq. (5): 
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By writing the velocity potential (as harmonic 
function) in the form of expansion in terms of spherical 

functions ⎝
⎛

⎠
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r
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where Yln(θ, ϕ) is the spherical harmonic, one obtains 
the system for stimulated oscillations of the droplet 
surface from Eq. (6) by differentiation with respect to 
time: 
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where fln = ⌡⌠
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2ν (2l + 1) (l – 1)
 is the characteristic time of 

damping of the oscillations due to viscosity forces; 

Ωl = 
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 is the natural (Rayleigh) 

frequency of the droplet oscillations. The asterisk 
means the complex conjugation.  Equation (7) is 
completed by the initial condition 
Φln(0) = dΦln(0)/dt = 0. 
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The following equation for coefficients of the 
expansion of the surface displacement into a series over 

spherical functions ξ(t, θ, ϕ) = ∑
ln

 ξln(t) Yln(θ,ϕ) 

follows from Eq. (7) 
 

d2ξln
dt2

 + 
2
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dξln
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 + Ω2
l ξln = 

l fln
ρr0

 ,  (8) 

 
It differs from Eq. (7) in its right-hand side.  

Initial conditions for Eq. (8) have the form 

ξ(0) = 
dξ(0)

dt
 = 0. 

It should be noted that the equations (7) and (8) 
of analogous form can be obtained only from the 
boundary condition (4) without the use of integral 
equation (5), even if one assumes that the liquid flow 
is the potential one.  The pressure in the liquid is 
related to the potential Φ: 
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However, the coefficient at the first derivative 

(2/tl), characterizing the damping in the system, is 
determined inaccurately.  Therefore, in Ref. 7, where 
the equation of oscillation was derived based on 
Eq. (4), the corresponding coefficient was introduced 
based on phenomenological considerations allowing for 
the law of mechanic energy dissipation at weak 
oscillations of the liquid ball surface.3 

One should give some comments concerning the 
form of the stimulating force in Eq. (8).  The matter 
is that in some papers devoted to the problem of the 
liquid flow in droplets at the presence of the light 
fields (for example, Refs. 6, 9 and 10) the 
expressions for the forces are given not accurately.  
Thus, the limits of applicability of the estimates and 
calculations performed in these papers for the cases, 
when the effect of pondermotive forces is essential, 
are not clear,6,10 or are valid only within certain 
range of liquid particles size.9 

The equations for weak oscillations (7) and (8) 
are obtained in most rigorous way in this paper. The 
case is a limitation, when weakly viscous liquid 
approximation is not valid.  If one estimates 

Re ∼ Ω2 r
2
0/ν the condition of smallness of the 

boundary layer is broken, for example, for water 
droplets with the size r0 ≤ 0.03 μm. To study such 
oscillations, one should use other methods (see 
Ref. 11). 

To solve Eq. (8), it is necessary to know the 
form of the function f(r), based on the Mie solution 
for the light field inside the droplet.  It is known 
that such a solution for the sphere and the linearly 
polarized wave incident on it has the form enabling 
the field to be presented as a series over spherical 
harmonics: 

E(r, θ, ϕ) = 
E0

2kr
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l = 1

∞

 (–i)l + 1[be(xa) Ml,1(θ, ϕ) ψl(r) + 

 

+ 
1
k
 cm(xa) ∇ × Ml,1(θ, ϕ) ψl(r)] + c.“.,  (9) 

 
where be and cm are the amplitudes of the partial 
harmonics (Mie coefficients15); xa is the diffraction 
parameter of the particle; k is the wave number inside 

the particle; Ml,m(θ, ϕ) = 
i

[l(l + 1)]
1/2 L Yl,m(θ, ϕ) 

are the œevenB and œoddB spherical vector-harmonics15; 
E0 = ⏐E0⏐; E0 is the light field incident on the 
particle. 

It is possible to solve the problem for the case of 
the uniform electromagnetic field inside the droplet.  
Then 
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3
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ε – 1
8π  [(ε – 1) E2 cos2θ + E2], 

 
and the coefficients of expansion of the function f over 
spherical functions are 
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4π
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Here δmk is the Kronecker delta-function (δmk = 1 at 
m = k, and δmk = 0 at m ≠ k).  As follows from 
Eq. (10), only elliptical oscillations occur in small 
droplets. 

 
RESULTS OF NUMERICAL CALCULATIONS 

 
The system of equations (8) was numerically 

solved in two stages.  At the first stage, the values of 
coefficients fln(t, θ, ϕ) were calculated using the Gauss 
quadrature and representation of the internal field in 
the form (9).  Then the differential equations (8) were 
solved using the Runge-Kutt difference scheme of the 
fourth order.  The shape of incident laser pulse was 
selected in the form I(t) = I0t/tpexp(–t/tp), where I0 
and tp are the peak intensity and duration of the pulse, 
respectively. 

The form of the function characterizing the spatial 
distribution of stimulating force for water droplets of 
different size is shown in Fig. 1.  In computations we 
considered only azimuthal-symmetric oscillations of a 
droptet surface (symmetric in an angle ϕ) 

As follows from Fig. 1, the stimulating force has 
maxima on the droplet poles at Mie parameter xa < 1, 
and they move to the equator zones, to the spherical 
coordinates θ = π/2, ϕ = 0 and ϕ = 2π, respectively, 
for xa > 1. 

The temporal behavior of the displacement of water 
droplet surface ξ(t)/ξmax , illustrating this effect, is 
shown in Fig. 2 for two directions θ = 0 and θ = π/2. 
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FIG. 1.  The density of the normal component of the 
resultant pondermotive force on the surface of water 
droplets with the radius r0 = 0.03 (1), 0.3 (2), and 
3 μm (3) as a function of polar angle θ.  Z-axis is 
directed along the direction at θ = 0–180°. The 
incident radiation intensity was taken to be 
I0 = 104 W/cm2. 
 

 
 

FIG. 2.  Relative displacement of the surface of water 
droplets with r0 = 0.03 (1, 1′) and 3 μm (2, 2′) as 
functions of time.  Two directions are considered: 
along, at θ = 0°, (solid curve) and across, θ = 90°,  
the beam (dashed line) with the intensity 
I0 = 108 W/cm2, and pulse duration tp = 10–7 sec. 
 

It is well seen from the figure that the initial 
phase of oscillations of small and big droplets is 
different by π/2.  Small particles are deformed in the 
direction perpendicular to the incident beam of 
radiation, while the big ones are deformed along the 
beam.  Amplitudes of the oscillations are also different: 
ξmax/r0 = 3⋅10–5 for r0 = 0.03 μm and ξmax/r0 = 10–3 
for r0 = 3 μm at the intensity of the incident radiation 
pulse I0 = 108 W/cm2 with the pulse duration  
tp = 10–7 sec and wavelength λ = 0.53 μm. 

 
FIG. 3.  Temporal behavior of the partial harmonics of 
a water droplet with r0 = 3 μm and indices l = 2 (1), 
3 (2), 4 (3), and 9 (4). 
 

 
FIG. 4.  The shape of the water droplet surface (main 
cross section) with r0 = 25 μm at different time 
moments since the beginning of the action of radiation 
(I0 = 109 W/cm2; tp = 10–7 sec, direction of incidence 
from left to right): t = 50 (1), 80 nsec (2), 0.2 (3),  
0.5 (4), 5 (5), 15 (6), 30 (7) and 40 μsec (8). 
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Temporal behavior of the amplitudes of partial 
oscillations of a water droplet with r0 = 3 μm, 
I0 = 109 W/cm2, and tp = 10–7 sec is shown in Fig. 3.  
As follows from Eq. (7), damping of the high 
frequency harmonics occurs quite quickly, and their 
influence on the entire pattern of the droplet 
deformation is noticeable only at the initial stage of 
oscillations.  The calculated shape of the droplet 
surface with r0 = 25 μm (main cross section) is shown 
in Fig. 4 at different time moments.  The radiation 
pulse had the same parameters as in the previous figure.  
As follows from the figure, local deformations of the 
water droplet surface, initially caused by the high 
frequency oscillation modes, are subsequently developed 
to the elliptic oscillations at the fundamental frequency 

Ω2 = 
⎣
⎡

⎦
⎤8α

ρr30

1/2

.  In addition, quite strong deformations 

(ξmax/r0 ~ 0.3) of the droplet surface are observed.  In 
some cases they can lead to its destruction.8 

 
CONCLUSION 

 

Thus, we have formulated the equations of small 
deformations of the surface of a weakly viscous 
transparent liquid particle under the effect of 
pondermotive forces of the light field.  Essentially 
different deformations of small and large particles 
(from the viewpoint of the Mie theory) were revealed 
from the numerical solutions of the equations.  It is 
shown that the deformations of small particles are 
initiated perpendicularly to the incident beam, while 
the deformations of large particles are along the laser 
beam.  The possibility of quite strong deformations to 
occur under certain conditions is established 
theoretically.  They can lead to destruction of a particle 
as well as to significant scattering of incident light on 
the particle surface. 
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