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The expansion of the light scattering phase matrix elements over the 

generalized spherical functions is performed in order to determine the number of 
the expansion terms providing the representativity of calculational data in the 
problems on the transfer of polarized light.  The expansion coefficients have been 
investigated assuming typical models of continental and urban aerosol.  The model 
aerosol polydispersions involve, in certain proportions, such components as dust 
particles (insoluble in water), soluble particles, and soot particles.  The data on the 
convergence of the diagonal and offdiagonal elements of the scattering phase 
matrices are presented. 

 

INTRODUCTION 

 

An enhanced interest has been shown in recent 
years in atmospheric observations using polarized light. 
This is connected with looking for new techniques for 
remote monitoring of the environment.  Polarization 
effects, if used for atmospheric observations, provide 
much more information compared to simple scattering.1  

However, the development of corresponding 
polarization techniques is more difficult and requires a 
detailed study of the light scattering by methods of the 
transfer theory in a vector form.  The vector transfer 
theory uses the expansion of the scattering phase matrix 
elements over the generalized spherical functions.2,3  It 
is difficult to take into account all the expansion terms, 
so one usually truncates the series to make engineering 
calculations, restricting the consideration to 
corresponding approximations.  This paper deals with 
the expansion of the scattering phase matrix elements 
of atmospheric aerosol over the generalized spherical 
functions.  The number of terms to be taken into 
account in order to provide the representativity of the 
data is assessed. 

 

MICROSTRUCTURE AND OPTICAL 

PARAMETERS OF AEROSOL 

 

The scattering phase matrix elements calculated by 
the Mie theory for various microstructure and optical 
constants of the aerosol make up the initial data set for 
the analysis.  We use the models of the low 
atmospheric aerosols that are recommended by the 
Radiation Commission of International Association on 
Meteorology and Atmospheric Physics (IAMAP).4  
Optical parameters of the aerosol substance are set, in 
the models considered, for the visible range.  Each 

model includes the main aerosol components in certain 
proportions: D are water insoluble particles of soil 
origin (dust component); W are the soluble particles 
(ammonia, calcium sulfate, and organic compounds); 
and S are the carbon particles of anthropogenic origin.  
The aerosol components have their own refractive 
(n = 1.53(D); 1.53(W) and 1.75(S)) and absorption 
indices (i�=�8⋅10$3(D); 6⋅10$3(W), and 4.4⋅10$1(S)) 
at the wavelength λ = 0.55 μm.  Particle size-
distribution is approximated by a single mode 
lognormal distribution 

 

f(r) = 
1

2πσr
 exp ⎣

⎡
⎦
⎤$ 

ln2(r/r0)
2σ2 , (1) 

 
where r0 and σ are the parameters taking the values of 
0.5 and 1.09527; 0.005 and 1.09527; 0.0118 and 
0.69315 μm for the components D, W, and S, 
respectively.  The modal radius rm of the distribution is 
related to r0 by the relationship rm = r0exp($σ2); mean 

radius is $r  = r0exp(0.5σ2). 
Optical properties of a polydisperse ensemble of 

particles are mainly determined by the effective 
diffraction parameter ρ32 = 2πr32/λ, where 
r32 = r0exp(2.5σ2) is the effective radius equal to the 
ratio of the third and the second momenta of the 
particle size-distribution function.  The value r32 of the 
dust particles (D) distribution is two orders of 
magnitude greater than that of the soluble particles (W 
is equal to 10.033 and 0.1003 μm, respectively).  
Carbon particles have the most narrow distribution and 
the smallest r32 value of 0.0392 μm.  The components 
D, W, and S presented in a certain proportion form the 
aerosol models analyzed in the paper.  The proportion is 
70% of D, 29% of W, and 1% of S by volume for the 
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continental polydispersion and correspondingly 17%, 
61%, and 22% for the urban aerosol polydispersion. 

 
CALCULATION OF THE EXPANSION 

COEFFICIENTS OF THE SCATTERING PHASE 

MATRIX ELEMENTS OVER THE GENERALIZED 

SPHERICAL FUNCTIONS (GSF) 
 

In the general case, to expand the scattering phase 
matrix elements xij(γ) (γ is the scattering angle) over 
GSPs, it is necessary to replace the SP representation 
of the Stokes parameters with the CP-representation,5 
in which the scattering phase matrix elements are 
expressed in terms of linear combinations of xij.  In the 
case of spherical particles, x11 = x22 and x33 = x44.  
Therefore the analysis becomes simpler, and one can 

consider only two generalized spherical functions Pl
00

(μ) and Pl
20(μ), where μ = cosγ.  The functions  

Pl
00(μ) coincide with the Legendre polynomials, and 

Pl
20(μ) are expressed in terms of Pl

00(μ) (Ref. 6): 
 

Pl
20(μ) = $ 

1

(l $ 1)l(l + 1) (l + 2)
 (1 $ μ2) 

d2 Pl
00(μ)

d μ2  .  

    (2) 
 

The coefficients of the scattering phase matrix 
elements expansion are calculated by the formulas 

 

x11
l

 = 
2l + 1

2
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$1

1

 

 
x11(μ) Pl

00 (μ) dμ, 

x12
l
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2l + 1

2
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x12(μ) Pl

20 (μ) dμ, 

 

x34
l

 = 
2l + 1

2
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$1

1

 

 
x34(μ) Pl

20 (μ) dμ, 

x44
l

 = 
2l + 1

2
 
⌡
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$1

1

 

 
x44(μ) Pl

00 (μ) dμ, (3) 

 

where the functions Pl
mn (μ) obey the condition 

 

⌡
⌠

$1

1

 

 
⏐Pl

mn(μ)⏐2 dμ = 
2

2l + 1
 . (4) 

 

It is known that strongly oscillating behavior of 

the functions Pl
mn (μ) at large l causes unpredictable 

errors in calculations of the integrals (3).  To resolve 
this problem, we have developed special procedure for 
calculating the integrals (3) for computations on an 
IBM PC/AT computer.  Its idea is in linear 
interpolation applied to numerical integration of 
Eq. (3) at each part of the interval [$1, 1] for 
sufficiently smooth functions xij(μ), while the integrals 

of the strongly oscillating functions Pl
mn(μ) are 

calculated analytically with the use of recurrent 
formulas. 

Integrating Eq. (3) by parts, the expressions for 

the expansion coefficients x11
l

 and x44
l

 are reduced to 

the form 
 

xii
l
 = 

1
2
 xii(μ) [ ]Pl+1

00 (μ) $ Pl$1
00 (μ)  ⏐ 1

$1 $ 

$ 
1
2
 
⌡
⌠

$1

1

 

 
x′
ii(μ) [ ]Pl+1

00 (μ) $ Pl$1
00 (μ) dμ. (5) 

 

Dividing the interval [$1, 1] into N small 
subintervals Δμ = μk+1 $ μk and using the linear 
interpolation of xii(γ), the integral in the right-hand 
side of Eq. (5) is approximately replaced by a sum.  
Then we finally obtain for the diagonal elements: 

 

xii
l
 = 

1
2
 ∑
k=0

N$1
 

 
  
xii(μk+1) $ xii(μk)

μk+1 $ μk
 × 
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⎩
⎨
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(2l $ 1) (2l + 3)
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1

2l $ 1
 [ ]Pl$2

00 (μk + 1) $ Pl$2
00 (μk) ⎭

⎬
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,  i = 1, 4 .   (6) 

 

The expression for the offdiagonal elements 
x12 = x21 and x34 = $x43 can be obtained in a similar 
way, taking into account Eq. (2): 

 

xii
l

 = 

2l + 1

2 (l $ 1)l(l + 1)(l + 2)
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k=0

N$1
 

 
  

xij(μk) + xij(μk+1)
2

 × 

 

× 
l(l $ 1)
l + 1

[ ]μk+1 P
l
00(μk+1) $ μk P

l
00(μk) $⎝

⎛
⎠
⎞l + 

2
l + 1

 × 

 

 × [ ]Pl $ 1
00 (μk+1) $ Pl$1

00 (μk) . (7) 
 

When deriving Eq. (7), we used the well known 
recurrent formulas6: 

 

(1 $ μ2) 
dPl

00(μ)
dμ  = $ (l + 1) [ ]Pl + 1

00 (μ) $ Pl $ 1
00 (μ) , 

 

Pl
00 (μ)= 

1
2l + 1
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⎡

⎦
⎤d Pl+1

00 (μ)
dμ  $ 

 d Pl$1
00 (μ)
dμ  , (8) 

 

μ Pl
00(μ)= 

1
2l + 1

 [ ](l + 1)Pl+1
00 (μ) + l Pl$1

00 (μ) . 

 

Linear interpolation gives a good approximation at 
a relatively low asymmetry of the scattering.  The 
necessary accuracy is reached in the case of strongly 
elongated angular dependences by the Newton-Kotes 
method, by using the interpolating polynomials or the 
operation of the smooth additions to the functions 
xij(μ) in the range of small scattering angles.7  The 
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estimate of the error in calculating the expansion 
coefficients obtained from the test calculations for the 
Heney-Greenstein scattering phase functions does not 
exceed 1% for l < 40 and reaches 10% for l > 140. 

 

CALCULATIONAL RESULTS AND CONCLUSIONS 
 

Angular behavior of the scattering phase matrix 
elements xij(μ) calculated by the Mie theory for a 
polydisperse system of spherical particles corresponding 
to the models of continental and urban aerosol are 
shown in Fig. 1.  The comparison of solid and dashed 
curves shows that the dependences are qualitatively 
similar.   

The differences are significant only in certain 
ranges of μ.  The values x11 for continental aerosol in 
the range μ = 1 (not shown in the figure) exceed the 
corresponding values for urban model by more than five 
orders of magnitude.  The peculiarities in these aerosol 
models manifest themselves better in the representation 

by the terms of expansion, xii
l
, over the generalized 

spherical functions.  These differences are shown in 
Fig. 2a for x11(μ) and x44(μ).  The solid and dashed 
curves correspond to the discrete spectra constructed for 
continental and urban aerosol, respectively, at integer l.  
The dependences for each aerosol model have two 
maxima (at l = 2 and l ~ 140); the ratio of maxima 
varies when passing from one model to another from 
the values essentially less than 1 to the values greater 
than unity. The calculations show (Fig. 2a) that the 

spectra xl
ij for each separate component D, W and S are 

characterized by single mode distributions with the 
maxima at l = 1 (for the component S), 2(W) and 
130$140(D). Obviously, the dual mode spectrum for 
the continental and urban aerosol models is explained 
by the decisive contributions from the components W 

and S at small l values and from the component D at 
large ones. 

 

 
FIG. 1.  Scattering phase matrix elements for 
continental (solid curves) and urban (dashed curves) 
aerosol. 
 

The most significant differences between aerosol 
models for the elements x12(μ) (Fig. 2b) are observed 
at l values on the order of units, on the contrary, the 
differences for x34(μ) are stronger in the range of large 
l values.  That fact determines different convergence of 

the corresponding series.  The calculational results 

show that the observed oscillations of x12
l  and xl

34 
gradually become weaker and then disappear as the 

refractive index n decreases and the absorption index i 
increases. 

 

 
        a               b 
FIG. 2. Coefficients of expansion of the scattering 
phase matrix elements over the generalized spherical 
functions. 
 

The quality of approximation of the scattering 
phase matrix elements xij(μ) by the truncated series 
was estimated according to two criteria.  One is based 
on the closeness equation and by the rms deviation 
from the initial elements of the scattering phase matrix 

 

xij(μ) = ∑
l = sup(m,n)

L

      xij
l
 Pl

mn(μ) (9) 

 

at some L values.  The first criterion uses Parceval-
Steklov equality (closeness equation) 
 

∑
l=sup(m,n)

∞

     
2

2l + 1
 (xij

l
)
2
 = ⏐�⏐����    xij(μ) ⏐⏐�����

2
, (10) 

 

where ║xij(μ)║ is the norm of the scattering phase 
matrix element.  The approximation quality is 
characterized by the value 
 

∑ 

 (L) = 
1

⏐⏐    xij(μ)⏐⏐   
2 ∑
l = sup(m,n)

L

     
2

2l + 1
 (xij

l
)

2
. (11) 

 

It is obvious that Σ(L = ∞) = 1 in the case of the exact 
representation of xij(μ) by the series (9). 

The rate of convergence of the series (9) for 
different elements of the scattering phase matrix is shown 
in Fig. 3.  The deviation of Σ(L) from unity of less than 
1% is observed for continental aerosol at L > 200.  The 
value L for urban aerosol is a little bit lower (about 160) 
but the rate of convergence is lower than that for 
continental aerosol model starting with L ~ 5. 

The elements x34(μ) have sufficiently good 
convergence even in the range L of 60, but the rate of 



842   Atmos. Oceanic Opt.  /October  1996/  Vol. 9,  No. 10 A.B. Gavrilovich and V.I. Bychek 
 

convergence is very low in the range L = 15$60.  Quite 
satisfactory convergence for x12(μ) is provided at 
L = 10 for both models. 

The results shown in Fig. 3 make it possible to 
obtain the number of expansion terms to be taken into 
account in the representation of the scattering phase 
matrix elements in the form of Eq. (9) for reaching 
certain preset deviation from the exact expansion.  The 
value of deviation 1 $ Σ(L) is usually determined by the 
requirements of the problem to be solved. 

 

 
 

FIG. 3.  Illustration of the convergence of series of 
expansion of different elements of the scattering phase 
matrix over generalized spherical functions. 
 

The quality of approximation of the angular 
behavior of the elements of the scattering phase matrix 
xij(μ) by the truncated series (9) of the expansion over 
the generalized spherical functions is shown in Fig. 4.  
The data shown here are evidence of the fact that, 
taking, for example, 50 terms of the expansion over 
GSP, one can reach an acceptable accuracy of 
reconstruction of the angular behavior of the element 
x44(μ) of the scattering phase matrix (Fig. 4a), while 
10 terms are enough for correct representation of the 
behavior of x12(μ) (Fig. 4b). 

The data obtained in the paper and corresponding 
conclusions should be taken into account when solving 
 

the problems of optical radiation transfer in the 
atmosphere, considering polarization. 

 

 
 

FIG. 4.  Initial and reconstructed elements x44(μ) and 
x12(μ) of the scattering phase matrix for continental 
aerosol model. 
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