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This paper deals with a model of admixture dispersal in the atmospheric 

boundary layer.  The model developed is to be used in IBM-compatible computers.  

The wind field is determined by analytically solving three-dimensional non-

stationary linear system of the atmospheric boundary layer equations that allow for 

orographic and dynamic inhomogeneity of the underlying surface and for the quasi-

stationary sublayer.  Admixture concentration is found by numerically solving 

semiempirical turbulent diffusion equation.  To set the diffusion coefficients they 

are assumed to be proportional to the corresponding components of the Reynolds 

stress tensor.  The results obtained using this model have been compared with the 

observational data and with those obtained using other models. 

 

Reduction, into practice, of modern methods of 
simulating the dispersal of gas and aerosol admixtures 
in the boundary atmospheric layer needs for the 
development of corresponding software in order to use 
PCs.  However, this inevitably imposes certain 
restrictions on the software.  On the one hand, it must 
be œfastB, convenient, and sufficiently simple for users.  
On the other hand, the mathematical models used 
should rely on real physical processes.  The model 
proposed in the present paper satisfies this 
contradictory requirements to a certain extent. 

 

1.  MODEL OF THE BOUNDARY LAYER 

DYNAMICS 

 

The model has a two-layer structure consisting of 
the near-surface layer z0 ≤ z ≤ h and the rest part of the 
boundary layer h < z ≤ H, where z0 is the roughness 
parameter, h is the height of the near-surface layer, H 
is the height of the boundary layer. 

The system of equations1 taking the following 
form after linearization will be considered as the initial 
one: 
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The initial conditions for t = t0 and the boundary 

conditions for z = h and H are as follows (below we 
suppose that H → ∞): 

t = t0:   U = U0 ,   V = V0 ,   θ = θ0 ,   q = q0 ; (2) 
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Theoretically, all the unknowns entering into the 

system of equations (1) and (2) are the averages over 
certain statistical ensembles.2  However, in practice the 
averaging over an ensemble is changed by averaging 
over a temporal interval approximately 20 minutes 
long. 

The equations (1) are written in a generalized 
orthogonal coordinate system.  The axes x and y are 
curvilinear in the terrain surface and oriented to the 
east and to the north, respectively, the axis z is 
directed vertically upwards.  The terrain whose 
inclination angles α and β are supposed to be small is 

described by the function δ(x, y), α = 
∂δ
∂x << 1, β = 

∂δ
∂y

 << 1.  Other designations are as follows: U and V are 
deviations of the horizontal wind velocity components 
from their background values Ub and Vb, respectively; 
θ and q are deviations of the potential temperature and 
specific humidity from their background values θb and 
qb, respectively; S is the stability parameter; Sq is the 
gradient of the background specific humidity; νh is the 
coefficient of vertical turbulent exchange at z = h; λ is 
the convection parameter, and l is the Coriolis  
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parameter.  According to Ref. 1, we suppose that the 
background values are known, the velocity components 
Ub and Vb coincide with the geostrophic wind are 
constant, the background temperature and humidity 
correspond to the standard atmosphere. 

The system of equations (1) describes nonstationary 
thermohydrodynamic processes in the boundary 
atmospheric layer over a thermally and orographically 
inhomogeneous underlying surface. Horizontal 
inhomogeneities are assumed to be small. In this case the 
nonlinear advective summands of the initial system of 
equations (1) are not the decisive ones as compared with 
the Coriolis force, buoyancy force, and the vertical 
turbulent exchange entering into the right-hand part of 
the first two equations in the system (1). So the 
nonlinear terms can be neglected.  For this same reason, 
we also neglect a part of the horizontal pressure gradient;  
from which, because of the curvilinear coordinate system, 
used are only the summands with the Archimedes force 
whose components act along the slant terrain surface. 

At the height of the near-surface layer z = h, the 
turbulent flux of the momentum τU, τV, heat τ

θ
, and 

moisture τq are supposed to be known and obtained by 
solving the equations for the constant flux layer.3  
Turbulent processes weaken towards the upper 
boundary of the boundary layer, and the vertical 
turbulent transfer of the momentum, heat, and moisture 
equals zero at z = H. 

Following Ref. 3, we use the similarity theory,4 
empirical functions,5 and the balance equation for the 
energy flows on the underlying surface3 in order to 
describe the structure of the near-surface layer. 

The system (1) under the initial and boundary 
conditions (2) admits an analytical solution.  After the 
introduction of new functions and integro-differential 
transforms described in Ref. 6, we obtain the following 
expressions for the wind velocity, temperature, and 
humidity in the upper part of the boundary layer 
(z ≥ h): 
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Thus the formulas (3) allow one to obtain the 

values of meteoelements at the height of the near-
surface layer and in the boundary layer. 

It should be noted that, in order to determine the 
wind velocity at h ≤ z ≤ H by formulas (3), it is, 
necessary to know their background values Ub and Vb 
which are supposed to be given in the problems dealing 
with the boundary layer.  Experimental determination 
of Ub and Vb at the height z = H is connected with 
certain technical difficulties.  Therefore, in this model, 
they are obtained from measurements of the wind 
velocity in the near-surface layer with the use of 
Newton iteration method. 

 
2. THE ADMIXTURE TRANSPORT MODEL 

 
To calculate the concentration of an admixture the 

semi-empirical equation of turbulent diffusion2 
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with the initial and boundary conditions 
 

C t = 0 = 0,  C
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is used.  Here C is the average value of the admixture 
concentration over the interval of twenty minutes; t is 
time; x, y, z are the spatial coordinates; U, V, and W 
are the components of the wind velocity field; VS is 
Stokes sedimentation rate of aerosol particles; Kx, Ky, 
and Kz are coefficients of horizontal and vertical 
turbulent diffusion; X, Y, H are horizontal dimensions 
and the height of the calculational domain; α is the 
logarithmic coefficient of the admixture decay; R is the 
function simulating the work of the source; β is the 
coefficient of admixture interaction with the underlying 
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surface. The process of an admixture dispersal in the 
atmospheric boundary layer is supposed to be local. 
So the admixture concentration equals zero at a 
sufficiently large distance from the source at the 
horizontal boundaries of the domain and at the upper 
boundary, as well. The turbulent and gravitational 
flows of the admixture are proportional to its 
concentration at the lower boundary. The coefficient 
β is the empirical value depending on the size of 
aerosol particles, their state (liquid or dry), the type 
of the underlying surface, and other characteristics. 

The equation (4) can be reduced to a system of 
one-dimensional equations by its splitting into physical 
processes and directions.7 These equations can be solved 
by the finite difference method with the use of Krank$
Nikolson8 and Fromm$Van-Leer9,10 schemes. 

The hypothesis that the coefficients Kij are 
proportional to the corresponding components of the 
Reynolds stress tensor11 was used in order to set the 
coefficients of turbulent diffusion.  To apply this 
hypothesis, it is also necessary to set the ratio of the 
kinetic energy of turbulence, b2, to its dissipation rate, 
ε.  These parameters were calculated in correspondence 
with a simple algebraic model11,12 from the known 
fields of the mean wind velocity and temperature.  The 
hypothesis was verified in the experiments performed 
under the conditions of turbulence in the near-surface 
layer,13 and the possibility of its successful application 
to the calculation of the admixture dispersal was 
demonstrated.  The method for measuring coefficients 
Kij was based on the œrecursiveB approach proposed by 
Galkin.14 

The parameters b2 and ε obtained in the above-
described way were used in order to approximate the 
term describing the dissipation in the equation for the 
concentration dispersal.11  The empirical constants for 
the algebraic model were taken from literature data. 

 
3. COMPARISON OF THE RESULTS OBTAINED 

WITH THE DATA FROM OBSERVATIONS AND 

FROM OTHER MODELS 

 
To compare the calculational results obtained by 

the given model with the experimental data, the data of 
observations15 during the period from 15 h August, 24, 
1953 to 13 h August 25, 1953, (near the city of O’Neil, 
State of Nebraska, USA) were used. 

The values of the input parameters were set in 
accordance with Refs. 16, 17, and the components of 
the mean value of wind velocity were taken from the 
data15 of observations for the height of 16 m. Figure 
presents the isolines of the wind velocity module 
which were constructed using calculational results 
(dashed lines) and experimental data (solid lines) for 
the period from 15 h August 24 to 13 h August 25 up 
to the height of 300 m.  One can see that the 
maximum discrepancy is observed at the transition 
period nearly 21 h August 24.  The analysis of the 
data from Ref. 15 made in Ref. 16 demonstrates that 
the presence of the cool advection along the x axis 

and heat advection along the y axis in the 
background flow nearly 21 h ignored in the model 
seems to be the cause of such a discrepancy.  
Additional analysis of relative errors (calculation$
experiment) shows that they are close to measurement 
errors of wind velocity. 

 

 
FIG. 1.  Isolines of the absolute value of wind 

velocity: solid lines are for the observational data, 

dashed lines are for the results of calculations;  

numbers at the isolines indicate the wind velocity, 
m/sec. 

 

Let us compare the results of calculations by the 
above model with the calculations by similar models 
(see, for instance, Ref. 18) where, based on the data of 
observations, the author compares fourteen different 
models of turbulent exchange from the simplest one 
with a constant coefficient of vertical turbulent 
exchange to the model using the balance equation of 
turbulent energy.  The values of rms deviations of the 
calculated values and experimental data for wind 
velocity obtained by all fourteen models and averaged 
over the whole observation period18 for different 
heights fall within the range from 1.67 to 5.28 m/sec.  
Similar value averaged over the whole observation 
period for the 300 m layer and obtained by our model 
equals 1.43 m/sec.  It is obvious that better 
coincidence is achieved by using the measurement data 
of wind velocity near the underlying surface in contrast 
to the data of Refs. 16, 17, and 18 requiring 
information about Ub and Vb at the height H. 
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