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The representation of the transmission function by the series of exponents is 
discussed based on the idea of replacing the absorption coefficient very changeable 
with frequency by a smooth function of frequency.  Making use of this 
representation, simple approximations of the transmission function are derived for 
inhomogeneous media and overlapping spectra.  The adequacy of these relations is 
illustrated by calculations of the transmission function in the spectral ranges 6600$
7700 cm$1 and 2200$2400 cm$1 and by their comparison with experimental data. 

 
The method referred to as the k-distribution or the 

series of exponents is such a trick by which the 
absorption coefficient i(ω), entering into the expression 
for the transmission function F(z) (in the frequency 
range Δω = ω″ $ ω′ for an equivalent absorber amount 
z) and grossly changing with frequency ω, is replaced 
by a monotonic function with s(g) (an example of i(ω) 
juxtaposed s(g) is shown in Fig. 1).  Replacement is 
performed in such a manner that the equality 

 

F(z) ≡ 
1
Δω ⌡⌠

 

 
e$ z i(ω) dω = ⌡⌠

0

1

 
 

 
e$ z s(g) dg  (1) 

 

is perfectly exact.  Furthermore, in the second equality 
of Eq. (1) the quadrature formula (with abscissas gn  
and ordinates an) is applied, which in essence marks the 
appearance of the series of exponents 
 

F(z) = 
n
∑ an e

$ z s(gn)
  (2) 

 
with, naturally, small number of terms. 

The utility of this trick with series (2) in 
calculating the characteristics of an aerosol$molecular 
medium integrated over the frequency spectrum is well 
known.1  At present, this idea is widely applied2$16 for 
solving conventional problems of atmospheric 
spectroscopy (calculation of F for an inhomogeneous 
medium, overlapping spectra, and the source function).  
However, it is only one of the procedures used for this 
purpose, and by no means most efficient.  The 
potentialities and advantages of the method discussed 
are most likely not exhausted but they need to be 
proved and argued.  Some mathematical and methodical 
foundation is necessary for this purpose.  In what 
follows some considerations related to this sufficiently 
general problem and their concrete illustrations are 
presented. 

 
 

FIG. 1.  Absorption coefficient of CO2$N2 in the spectral 
range 2350$2360 cm$1 at T = 300 K (a) and function 
s(g) inverse to g(s) in the same spectral range (b). 

 

Let us first note that the way of realization of 
Eq. (1) is the Laplace transform and the list of usually 
applied starting relations is well known 

 

F(z) = ⌡⌠
0

∞
 

 
f(s) e$ s z ds ,    

f(s) = 
1

2πi ⌡⌠
h$i∞

h+i∞
 

 
dz es z F(z) ,   h > 0, (3) 

g(s) = ⌡⌠
0

s
 

 
f(s) ds ,   g(s) = 

1
2πi ⌡⌠

h$i∞

h+i∞
 

 
dz 

F(z)
z  es z , (4) 

 
where s(g) is the function reverse to g(s) from  
Eq. (4). 
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The first methodical point is initiated by Refs. 17$
19, where the series in the form of Eq. (2), being the 
Dirichlet series according to the terminology presently 
accepted in mathematics, are investigated at the 
mathematical level of rigor.  This creates that 
"mathematical climate" which enables one to 
circumvent the prevailing reasoning at the "physical 
level of rigor" in Refs. 2$16 accompanied with phrases 
rather verbose and sometimes appealing to pure 
intuitive considerations. 

A detailed example can be found in Ref. 20.  It is 
related to calculating s(g) and g(s) immediately from 
κ(ω), in actuality, from the spectroscopic databases.  It 
is apparent that the answer should be obtained by 
substituting the first equality of Eq. (1) in Eq. (3) or 
(4) with subsequent change of the order of integration 
over ω and z.  However, as it appears, this operation is 
mathematically possible only for Eq. (4) and results in 
a rather simple calculating procedure 

 

g(s) = 
1
Δω ⌡⌠

i(ω) ≤ s, ω∈[ω′, ω″]

 

 
dω . (5) 

 
The consequence of this fact is very remarkable.  

The first expression in Eq. (3) can be surely written as 
a quadrature formula 

 

F(z) = ∑
n
 bn e

$ sn z
  (6) 

 

with abscissas sn and ordinates bn.  However, in spite 
of the formal equivalence of Eqs. (2) and (6), the first  
formula should be preferred for the reason already 
given in the previous paragraph.  This situation can be 
well classified as mathematical self-consistency because, 
on the other hand, an and gn in Eq. (2) are "simply the 
numbers," whereas in Eq. (6) the ordinates bn depend, 
of course, on the characteristics of the medium in view 
of their explicit relation to f. 

The last circumstance is of primary importance 
when substantiating the approximate expedients of 
solving the problems of atmospheric spectroscopy.  We 
bear in mind the fact that in Eq. (2) the parameters of 
the medium enter only into g(s) by Eq. (5). 

An analysis shows that for the inhomogeneous 
medium 

 

F ≡ 
1
Δω ⌡⌠

ω′

ω″
 

 
exp ⎣

⎡ 
 

$ ⌡⌠
(l)

 

 
i(ω, l) ⎦

⎤ 
 
dl  dω = 

 

= ∑
n
 an exp ⎣

⎡ 
 

$⌡⌠
(l)

 

 
s(gn, l) ⎦

⎤ 
 
dl  dω ≅ 

 

≅ ∑
n
 an exp [$ ∑

j
 s(gn, lj)Δlj] . (7) 

 

In Eq. (7), the curvilinear integral Idl(...) along 
the ray path appears, and i is a function of the medium 
l in addition to ω.  In the last equality in Eq. (7) 

Idl(...) is represented as an integral sum.  An example 
illustrating the accuracy of Eq. (7) is given in Table I. 

Similar estimates (and with obligatory appeal to 
Eq. (2)) assert a reasonable possibility of the 
approximation 

 

F ≡ 
1
Δω ⌡⌠

ω′

ω″
 

 
e
$ i1 z1 $ i2 z2 dω = ∑

n
 an e

$ s1 (gn) z1 
$ s2

 

(gn) z2  

  (8) 
 
for the transmission function in the case of overlapping 
spectra.  The symbols i1 and i2  are used for the 
absorption coefficients of gases in the mixture, z1 and 
z2 are the equivalent absorber amounts, and s1 and s2 
are constructed with the use of Eq. (5) for each gas 
separately.  The efficiency of Eq. (8) can be seen from 
Table II. 

 
 

TABLE I.  Calculation of transmission by H2O for inhomogeneous media, 6622$7092 cm$1, Flbl = 0.262 and 
Fexpon = 0.260. 
 

     n 
Serial number of 

layer 

 

F, K 
 

P, atm ρH2O,
 
g/m3

 

sn(l) 1 2 3 4 5 

     an 

     0.118 0.239 0.284 0.239 0.118 
1 291 0.962 9.33 sn(l1) 0.028 0.214 0.770 3.184 23.83 
2 289 0.913 7.95 sn(l2) 0.022 0.175 0.631 2.611 20.14 
3 287 0.863 6.77 sn(l3) 0.017 0.141 0.514 2.140 17.04 
4 281 0.768 4.96 sn(l4) 0.011 0.092 0.339 1.435 12.15 
5 269 0.592 2.09 sn(l5) 0.009 0.031 0.114 0.503 4.76 

an exp ($ ∑
i

 sn(li))    
0.108 0.124 0.0264 10$5 $ 

 
 



S.D. Tvorogov et al. Vol. 9,  No. 3 /March  1996/ Atmos. Oceanic Opt.  
 

 

241

TABLE II.  Calculation of transmission by H2O+CO2  for overlapping spectra, 6622$7092 cm$1, T = 296 K, 
P = 1 atm, PCO2

 = 3⋅10$4 atm and ρH2O = 10$2 g/m3. 
 

 

k 
 

1 
 

2 
 

3 
 

4 
 

5 
 

l, km 
 

Fexpon 
 

Flbl 
Fexpon

 
Flbl

 

an 0.118 0.239 0.284 0.239 0.118 1 0.995 0.993 1.002 
sn(1) 3.24⋅10$5 2.39⋅10$4 8.55⋅10$4 3.54⋅10$3 2.60⋅10$2 10 0.952 0.938 1.014 
sn(2) $ 0 1.05⋅10$5 3.17⋅10$4 1.07⋅10$2 100 0.779 0.773 1.06 

      1000 0.428 0.371 1.15 
 
Table III allows one to estimate the number of  

terms in Eq. (2) if the Gauss or Chebyshev quadrature 
formulas are used. In addition we note that in the 
direct line-by-line calculation of F by Eq. (1), ~60 
thousands of points should be used. 
 
TABLE III.  Calculation accuracy of transmission by 
CO2+H2O using the series of exponents,  
7092$7634 cm$1, T = 296 K, P = 1 atm, 
ρH2O = 10 g/m3, and PCO2

 = 3⋅10$4 atm. 
 
 

l, km 0.004 0.05 0.5 1 5 
Flbl 0.918 0.680 0.370 0.298 0.167
FGauss5 0.921 0.682 0.373 0.309 0.171
FGauss6 0.917 0.680 0.364 0.289 0.170
FGauss7 0.916 0.678 0.373 0.302 0.160
FCh6 0.926 0.682 0.374 0.296 0.147
FCh7 0.924 0.683 0.372 0.300 0.159
FCh9 0.920 0.682 0.370 0.303 0.172

FGauss5/Flbl 1.003 1.004 1.009 1.037 1.026
FGauss6/Flbl 0.9987 0.9999 0.985 0.970 1.020
FGauss7/Flbl 0.9975 0.9981 1.008 1.013 0.961
FCh6/Flbl 1.009 1.003 1.012 0.994 0.882
FCh7/Flbl 1.007 1.004 1.007 1.005 0.950
FCh9/Flbl 1.002 1.003 1.002 1.017 1.031

 
Another methodical point consists in our 

conviction that when constructing radiation blocks for 
climate models and algorithms for geophysical 
applications, the reliability of suggested approaches 
should be checked by comparison of the appropriate 
estimates with experimental data. Figures 2 and 3 show 
examples of our calculations. 

 

 
 

FIG. 2.  Transmission function in the spectral range 
2200#2400 cm$1.  Curve shows experimental data of 
Ref. 22 and dots are for the results of our calculation 
using the series of exponents that coincide with the 
line$by$line calculation at the scale of the figure.  
Here T = 291 K, P = 6.21⋅104 Pa, and PCO2 = 0.0230. 

 
FIG. 3.  Transmission spectrum of H2O within the 
1.4 μm band.  Curves show the experimental data,23 
dots are for the results of calculation using the series 
of exponents, u is the equivalent amount of the water 
vapor,  u = 0.845 (1), 0.135  (2), and 0.018 g/cm2 
(3), and P = 1 atm. 

 
The position described above pays some 

unexpected dividends, namely, the possibility to judge 
on the line shape periphery from its resonance part.  
The matter is that when using Eq. (5) for calculations, 
the function g(s) is surely determined by the regions 
corresponding to the line centers, and the line wings 
with their exponential decrease21 can be ignored.  
Therefore, the calculation is performed using the 
Lorentzian line shape truncated at that displacement 
from the line center at which the periphery begins.  
This boundary, as it appears from comparison between 
experimental and calculated data, varies with the 
temperature. 
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