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In this paper we show the possibility of cyclic self-transformation to occur in 
an interferometer with Kerr nonlinearity. This prediction follows from the results 
of computer simulations of morphogenesis in such an interferometer. We also 
present here grounds for the concept of round-trip instability which we consider to 
be the cause of cyclic phenomena. Influence of a spread in the starting rates of 
different processes, Vj = dUj/dt at t = 0, on the dynamics of a multicomponent 
system has been determined and a normalized measure, θV, of such a spread in Vj 
is proposed. Depending on θV value the process occurring can be periodic, 
nonperiodic, or a multilevel stationary (i.e. with different Uj) process. 

 
The origin of synergetics is closely connected with 

the studies of processes in lasers.  One of the founders 
of synergetics G. Haken considers laser as a prototype 
of the system which creates a complex spatiotemporal 
structure in the self-organization process.  Transition 
from non-coherent laser radiation to the coherent one is 
an example of self-organization.  At the present stage of 
development of synergetics laser as an object for study 
gives up its place to laser as a factor which causes new 
classes of self-organization processes. Formation 
processes in a ring-shaped optical interferometer 
containing one or several spatially separated nonlinear 
media1 is related to a number of similar processes.  This 
paper continues the computer experiments described in 
Refs. 2$4.  We were interested in a possibility and 
peculiarities of manifestation of stationary regimes of 
optical structures generation in such an interferometer.   

The interferometer containing a medium with Kerr 
nonlinearity and providing two-dimensional large-scale 
transformations of field in the feedback circuit 
(Fig. 6.19 in Ref. 1) is suitable not only for natural 
study of the phenomenon of transformation of input 
Gaussian beam into a complex dynamic spatiotemporal 
structure but also for simulation of evolution of this 
structure, i.e., the phase distribution U(x, y, t) over 
the cross section of a light beam.  Nonlinear parabolic 
equation with a shifted spatial argument (see Ref. 1) is 
used as a model: 

 

∂U(x, y, z)/∂t + U(x, y, z)/τ = dΔ⊥U(x, y, z) + 
 

+ K[1 + γcos(U(x', y', t) + f0)]/τ. (1) 
 

The coordinates x′ and y′ are connected with x and y 
by the relations: 
 

x' = α(xcosΔ + y sinΔ), 
 

y' = α(ycosΔ $ x sinΔ), 

where α is the change of the laser beam scale; Δ is the 
field turn in the feedback circuit.   

When the initial phase distribution is 
U(x, y, 0) = sin(4πx) sin(4πy) + 1 (rad); the relaxation 
time of nonlinear part of the refractive index is 
τ = 0.001 s; the diffusion coefficient is d = 10$3 mm2/s; 
the nonlinearity parameter is K = 4.084; the visibility of 
the interference pattern is γ = 1; the constant phase 
difference is f0 = 0; α = 0.8; Δ = 50°, a periodic 
transformation of optical structures, we call the cyclic 
self-reorganization, is possible.  On the whole, the 
dynamics of formation is as follows.   

As a result of the transient process (with the 
duration about τ), a two-tail spiral is formed.  Then 
this spiral is spontaneously modified not going to a 
stochastic state.  By the time tA = 9.5τ (when 
simulating the optical morphogenesis the interval 10τ is 
estimated as a time of reaching a stationary state2) the 
structure A (Fig. 1) is formed.   

 
FIG. 1. 
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Then A is replaced by a continuos sequence of the 
optical self-reorganizing structures.  At time tA1 = 14τ 
the structure A1 is formed which is indistinguishable 
from the structure A.  Then a continuos sequence of the 
phase distributions U(x, y, t) is repeated cyclically 
with the period T = tA1 $ tA ≅ 4.5τ.   

The cyclic self-reorganization is maintained when 
the diffusion coefficient d varies within the interval 
(2...3)⋅10$3 mm2/s.  At certain stages of the cyclic 
self-reorganization the four-lobe structure, which 
rotates as a whole unevenly in velocity by an angle of 
10$20° during the time about τ, is observed.   

An increase in d to the magnitudes about  
10$2 mm2/s leads to a spontaneous transition from a 
two-tail spiral to a two-lobe structure (at t ≅ 2τ) 
instead of the cyclic self-reorganization.  This structure 
is modified by division of lobes (at t ≅ 4τ) to the four-
lobe structure, which performs the counter-clockwise 
incomplete rotation as a whole with the half-period 
T4/2 = (14 ± 2)τ.  By the time t ≅ 24τ this structure is 
transformed spontaneously into the three-lobe structure 
which experiences a stationary clockwise rotation with 
the period T3 = (12 ± 2)τ during the observation time 
t ≅ 100τ.  An estimation of the rotation velocities of 
these structures and determination of the rotation 
direction by formulas from Refs. 5 and 6 for the unit 
radius of a ring gives for an optical reverberator 
T4 ≅ 15τ and T3 ≅ 10τ, respectively, and shows that 
directions of rotations are opposite.   

The simulation assumes that in the nonlinear 
interferometer with a two-dimensional feedback a cyclic 
development of the spatiotemporal instability is 
possible.  This instability leads to rotation of the 
structures1,3 but without their cyclic self-reorganization 
(the rotation takes place in the case of a one-
dimensional narrow ring-shaped beam too1,5,6) under 
certain conditions, while under other conditions it leads 
to a cyclic self-reorganization but without the rotation 
of the structures, and for third type of conditions it 
leads to a rotation-cyclic transformation of these 
structures.  That is why this instability should be called 
as the rotation-cyclic or œround tripB instability.   

Study of the processes in active spatially separated 
optical systems is an important aspect of investigation 
of the dynamics of the optical structures. In contrast to 
the optical arrangement with a successively placed 
nonlinear media proposed in Ref. 1 (Fig. 6.6) we 
consider an optical arrangement with parallel placed 
nonlinear media, shown in Fig. 2, for the case of three 
media.  The optical fields E1, E2, and E3 interact in 
these media due to a partial and (or) complete 
transmission of radiation from one subsystem to another 
with the eight mirrors M which are shown in Fig. 2 by 
short solid lines.  For simplicity and reduction of the 
number of parameters being varied we select the case of 
the negligibly small-scale interaction of the optical 
fields in the nonlinear medium when the diffusion 
coefficients dj = 0.  Under these assumptions the model 
of a multicomponent system can be written in the form:  

 

dUj/dt = Kj[1 + γjcos(Ul + f0j)]τj $ Uj/τj, (2) 
 

where j = 1, 2, 3, ... , N; l = 2, 3, N, ..., 1. In 
accordance with Ref. 1, Uj is the wave phase difference 
in the jth nonlinear medium; nj = n0j + n2j |Ej(r, t)|2, 
Kj = n2j IINj kLj (1 $ Rj); k is the wave number; Lj is 
the medium length; IINj is the radiation intensity at the 
input of the jth medium; Rj is the reflectance of the 
interferometer mirrors for radiation in the jth channel; 
f0j = kLj n0j.   
 

 
FIG. 2. 

 
Different quantitative characteristics can describe 

an influence of differences in the subsystem parameters 
and initial conditions U0j on the process dynamics. 
Evidently, it is the most simple to take into account 
such quantities as a whole using the starting rates of 
the processes in the subsystem Vj = dUj/dt|t = 0 equal 
to magnitudes of the right-hand side of Eqs. (2) at 
t = 0.  The differences in the starting rates Vj can be 
described using the relations between them.  The 
normalized measure of the difference in the starting 
rates Vj can be one of the difference characteristics.  
This measure will be used in further operations.   

 

θV = 

N ∑
j=1

N$1

 (⏐Vj⏐ $ ⏐Vj+1⏐)2 + (⏐VN⏐ $ ⏐V1⏐)2

∑
j=1

N
 (⏐Vj⏐)

 , 

(3) 
where N is the number of subsystems.  It is obvious, 
that in the case of identity of the subsystem parameters 
and initial conditions (U0j = U0) the normalized 
measure θV ≡ 0.   

To elucidate the influence of differences in the 
process starting rates Vj = dUj/dt|t = 0 on the multi-
component system dynamics, Eqs. (2) were solved by 
the Runge-Kutta-Merson numerical technique.7 The 
assigned values U0j were the initial conditions when 
integrating Eqs. (2).  If U0j are set and all parameters 
in Eqs. (2) are known, then the starting rates Vj 
calculated as the right-hand sides of Eqs. (2) for t = 0 
are set also.  In its turn, knowledge of the value Vj 
allows the difference measure θV to be calculated by 
formula (3).   

The simulation showed that when the process 
starting rates in the subsystems (when θV ≡ 0) are the 
same, only a stationary motion occurs in the three-
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component system.  In this test case the phases Uj are 
naturally the same.   

If, however, the parameters of the subsystems are 
identical but the initial conditions U0j are different, or 
vice versa, then (depending on the value θV) six more 
types of evolution of the multi-component system can 
occur.   

For 0 < θV < 0.001 first the initial process of 
reaching the value Uj takes place, then the transient 
process with the stationary (and identical) phase 
Uj = Ust (TPSP) is realized.  The following condition 
was used as a criterion of this process stationarity: 

 

⏐dUj/dt⏐/Uj < 0.01. (4) 
 

As the simulation has shown, duration ts of TPSP by 
the criterion (4) depends on the degree of starting rates 
inequality θV as: 
 

ts = $ A lnθV $ B. (5) 
 

This law was obtained by the approximation of the 
dependence shown by curve 3 in Fig. 3.  The value ts is 
normalized by the time unit; the values θV1/5 are 
plotted on the abscissa for a convenience; the constants 
in Eq. (5) are A = 2.09 and B = 14.77.  For this case 
N = 3, τj = 1 s, γj = 0.8, jj = 5, f0j = U02 = U03 = 0; 
the value θV changes depending on U01.  The relation 
(5) keeps valid for variation of the number of nonlinear 
media, only the constants in this relation change.  
Curves 1 (the case of two and four media) and 2 (the 
case of five media) are presented in Fig. 3 for a 
comparison.  The constants A and B in Eq. (5) are 
equal to 0.50 and 4.45; 0.51 and 4.11; 0.72 and 5.63, 
respectively.   
 

 
FIG. 3. 

 
After TPSP three alternative versions of the phase 

dynamics are possible: nonperiodic, periodic, and 
 

stationary processes of Bdifferent levelsB.  In this case 
the values Uj are different that distinguishes the 
stationary process of Bdifferent levelsB from TPSP.   

No threshold, i.e. minimum θV value, for 
nonidentity has been found starting from which the 
process stationarity maintains during a long time.  This 
fact well agrees with the relation (5).   

Within the interval of values θV [0.001, 1] after 
the initial process of reaching the value Uj the transient 
process with the stationary (and the same) value 
Uj = Ust (with limited duration ts) has not recorded.  
Depending on the difference in the process starting 
rates in the subsystems the nonperiodic, periodic, or 
stationary process of Bdifferent levelsB, i.e., with 
various values of Uj can occur.   

The value θV = 1 is a kind of a boundary, since 
for θV > 1 in all numerical experiments performed the 
nonperiodic processes have not been observed.   

Thus, the dynamics type which is proposed to be 
called as œlimited stationarity regimeB is possible both 
in the one-component and multi-component nonlinear 
optical systems.  The adjective œlimitedB implies, first 
of all that this regime (in both systems) exists in a 
certain domain of the parameters and initial conditions; 
secondly, it means that its duration (in the multi-
component system) does not exceed certain value.  The 
term œstationarityB specifies a clearly expressed 
periodicity of formation (in the one-component system) 
or even a constancy of the phase in TPSP operation.   

 
REFERENCES 

 
1. S.A. Akhmanov, M.A. Vorontsov, and 
V.Yu. Ivanov, in: Modern Principles of Optical 
Processing of Information (Nauka, Moscow, 1990), 
pp. 263–325. 
2. M.A. Vorontsov and N.I. Zheleznykh, 
Matematicheskoe Modelirovanie 2, No. 2, 31–38 
(1990). 
3. A.I. Arshinov, R.R. Mudarisov, and B.N. Poizner, 
Izv. Vyssh. Uchebn. Zaved., Fisika, No, 2. 20–22 
(1994). 
4. A.I. Arshinov, R.R. Mudarisov, B.N. Poizner, and 
N.A. Starova, Izv. Vyssh. Uchebn. Zaved., Fizika, 
No. 6, 102–104 (1994). 
5. S.A. Akhmanov, M.A. Vorontsov, and 
V.Yu. Ivanov, Pis'ma Zh. Eksp. Teor. Fiz. 47, 
No. 12. 611–614 (1988). 
6. M.A. Vorontsov, V.Yu. Ivanov, and A.V. Larichev, 
Izv. Akad. Nauk SSSR, ser. Fiz. 55, No. 2. 316–121 
(1991). 
7. A.E. Mudrov, Numerical Methods for PC on the 
BASIC, FORTRAN, and PASCAL Languages 
(RASKO, Tomsk, 1991), 272 pp. 
 

 
 


