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We consider here the recent investigations into the coherent backscattering effect in 

discrete scattering media.  The shape of the coherent backscattering peak for spherical 

scattering media is studied experimentally.  It is shown that the peak shape for the spheres 

of small optical depth is adequately described by the Fraunhofer diffraction pattern, and 

for the case of optically dense spheres the above-mentioned peak is described by the 

convolution of the two functions, namely, the diffraction pattern for a sphere and the 

angular distribution within the peak for semi-infinite scattering medium with a plane 

boundary. 

 
The effect of coherent backscattering at multiple 

scattering of waves in discrete scattering media has 
been predicted theoretically about twenty years ago by 
Dr.K. Watson, a founder of the multiple scattering 
theory in quantum mechanics.1  This effect is inherent 
in the scattering of waves of any nature by arbitrary 
scatters and it has a clear physical interpretation.  
Namely, this effect is explained by the interference 
between the waves passed through the same scatters in 
the direct and opposite directions and having therefore 
the same phase at the observation point.  This effect is 
observed experimentally as a narrow peak increasing 
the intensity of multiply scattered radiation in the 
backward direction almost by a factor of two. 

From the methodical standpoint, the coherent 
backscattering is noteworthy because it does not 
appear in the fundamental equation of radiation 
transfer (ERT),2 describing multiple scattering of 
radiation of any nature, and can be considered as a 
correction to this equation1,3,4 taking into account 
the wave nature of radiation.  This correction can 
also manifest itself in numerous practical methods of  
diagnostics of scattering media, because one of the 
most suitable experimental schemes for diagnostics 
uses the radiation scattered in the backward 
direction, for example, in sounding of atmospheric 
clouds by coherent lidars.5 

Interest in the coherent backscattering effect has 
increased once its analogy with the general phenomenon 
of wave localization has been discovered.  Localization 
of waves in randomly inhomogeneous media plays an 
important role, especially, in the theory of electric 
conductivity of solid bodies without the ordered crystal 
structure (alloys, disordered semiconductors, and so 
on).  The analogy between the coherent backscattering 
effect and the wave localization lies in the following 
fact.  It is known that strong localization of electron 
waves on a randomly inhomogeneous potential (the 

Anderson localization),6 when the contribution of a 
localized electron state to the electric conductivity 
reduces to zero, is closely connected with the 
interference between the fields scattered by the 
potential inhomogeneities.  The above interference 
between the wave, passed through the same scatters in 
forward and backward directions, results, as in the 
previous case, in the decrease of electron conductivity 
and hence can be considered as a predecessor of the 
Anderson localization.  It has been suggested that this 
phenomenon be known as weak localization7,8 as 
opposed to the Anderson localization. 

Thus a possibility9,10 has evolved to study the 
basic regularities of weak localization of electron waves 
in the disordered solid bodies, when modeling this 
phenomenon using more simple experimental 
instruments, measuring, for example, the backscattering 
peak in light scattering by water suspension of 
polystyrene particles one micron in diameter. 

It should be noted that the effect of amplification 
of backscattering in the discrete scattering media is also 
identical to the effect of amplification of a signal 
reflected in backward direction in randomly 
inhomogeneous media like turbulent atmosphere (this 
effect was first noted by de Wolf11) as well as to the 
effect of amplification of a signal reflected from rough 
surfaces in backward direction.  By now the number of 
papers in this field is so large that it is impossible to 
discuss the above problems in this paper and we note 
here only some reviews.12$14 

The first experimental measurements of the 
backscattering peak in discrete scattering media have 
been carried out by the authors of Refs. 15$18, where 
laser radiation was scattered by a suspension of 
polystyrene particles of one micron size.  In these 
papers as well as in the subsequent experimental 
papers19-24 the scattering medium is taken in the form 
of a plane-parallel layer so that the scattering medium 
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can be considered to be unlimited across when 
interpreting the experimental data. 

As to the theoretical calculations of the shape of 
coherent backscattering peak, from the structure of the 
Feynman diagrams, describing the field multiple 
scattering, one can see that the coherent backscattering 
does not appear in the solution of the radiation transfer 
equation,2 and it can readily be expressed through this 
solution as an integral.1,3,4  Thus, all the difficulties 
with the calculation of the peak shape have amounted 
to difficulties occurred when obtaining either analytical 
expressions or numerical values for solutions of the 
radiation transfer equation at different parameters and 
geometry of scattering medium. 

The backscattering peak is described by the 
function 

 
P(θ) = I(θ)/I*(θ), (1) 
 
where I(θ) is the intensity of multiply scattered 
radiation; θ is the angle between the backward 
direction and the direction of scattering; I*(θ) is the 
radiation intensity, corresponding to the solution of the 
radiation transfer equation. 

Since the function I*(θ) is practically constant 
within the peak of backscattering, it can readily be 
measured experimentally as the intensity value I(θ) at 
the peak boundary.  We consider mainly not the 
function P(θ) itself but its characteristic parameters, 
namely, the amplification factor 

 
K = I(0)/I*(0) (2) 
 
and the peak halfwidth θ0, defined by the relation 

 

I(θ0) $ I*(θ0) = 
1
2
 [I(0) $ I*(0)]. (3) 

 
At small optical depths of the medium τ <   < 1 

some authors25$27 used simple analytical expressions of 
the double scattering approximation for theoretical 
description of the function P(θ).  However, since the 
optical depth of the medium in transverse direction was 
taken to be unlimited in this case, some doubts are cast 
upon the possibility of obtaining quantitative 
agreement between these expressions and the 
experimental data.  At the same time, because the 
amplification factor (2) is small at moderate optical 
depths, in this case there are only few such 
experimental measurements. 

The experimental measurements of the 
backscattering peak P(θ) are usually carried out for the 
case of large optical depth τ >   > 1.  In theoretical 
papers, in this case, the solution of ERT in the 
diffusion approximation26,28$31 is mainly used both in 
scalar version and taking into account the polarization 
of electromagnetic waves. 

The theoretical papers are of primary interest, in 
which not the approximations but exact solution of 

ERT are used.  Hence, in a recent paper32 the exact 
analytical expression was obtained for the function 
P(θ) for the case of a half-space with Rayleigh scatters.  
As an alternative to analytical methods, the numerical 
methods identical to the known numerical methods of 
solution of ERT are used in Refs. 4 and 30 for 
calculating the function P(θ), and in Ref. 33 the 
numerical methods are used for calculation of the 
amplification factor (2) for different states of radiation 
polarization, different optical depths of the medium, 
and different particle size, including the particles of 
spheroidal shape. 

We indicate the main qualitative regularities 
obtained in the above theoretical and experimental 
papers.  It is shown that the amplification factor (2) 
takes the values in the interval 1 < K < 2; and its 
value depends essentially on the state of polarization of 
incident radiation and on the state of polarization 
recorded by a receiver.  Besides, the peak is an 
anisotropic function with the halfwidth, depending on 
the two angles: ϕ1, the angle between the direction, 
determining the polarization state of the incident 
radiation and the scanning plane, and ϕ2, similar angle 
for the polarization state of the radiation detected. 

For small particles a < λ, where λ is the radiation 
wavelength and a is the particle size, the function P(θ) 
is a smoothly decreasing angular function.  In this case 
the peak halfwidth at a large optical depths is 
determined by the relation; 

 
θ0 = αλ/2πl,  (4) 
 
where l is the extinction length in a medium, and α is a 
constant of the order of unit.  In particular, for a half-
space of the Rayleigh particles, according to Ref. 32, at 
linear polarization of incident radiation with the 
direction of the polarization vector e we have 
 
K1 = 1.75  and  α1 = 0.61, (5) 
 
if the direction of the radiation detector polarizer and 
the scanning direction coincide with the vector e, and 
 
K2 = 1.12  and  α1 = 1.27, (6) 
 
if the above directions are perpendicular to the  
vector e. 

For the mean-sized particles both the diffusion 
approximation and the numerical calculations result in 
the conclusion that in this case the above qualitative 
pattern is retained when the extinction length is 
substituted by the transport extinction length, i.e., 
when introducing the supplementary cofactor 

 
β = 1 $ μ (7) 
 
into the right-hand side of Eq. (4) where μ is the main 
cosine of the scattering angle by one particle, being 
close to zero for small particles and approaching unity 
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for large particles.  And, at last, for very large particles 
when μ > 1/3 (Ref. 31) the monotony of the 
backscattering peak is broken and a supplementary 
maximum in the function P(θ) appears.  This maximum 
is present also at small optical depths of the medium in 
the approximation of double scattering.27 

The above described qualitative pattern has been 
obtained for scattering media, having the shape of a 
plane-parallel layer.  One of the important problems is 
the investigation of the backscattering peak for 
scattering media of a different shape.  In particular, in 
Ref. 34 the problem of the influence of medium 
limitedness on the backscattering peak is identified as 
the most actual problem in this field. 

In this paper the backscattering peak is studied 
experimentally on the basis of a simple shape of 
scattering medium, namely, a homogeneous ball. 

The schematic diagram of the experiment is 
presented in Fig. 1.  A linearly polarized Gaussian 
beam from a He-Ne laser 1 with the power 30 mW and 
wavelength λ = 0.63 μm falls on a beam-splitting plane-
parallel plate 2 which directs a beam portion (50%) to 
a polystyrene sphere 3.  In the experiments the spheres 
of different diameters ranging from 0.6 to 1.35 mm are 
used. 

 

FIG. 1.  Optical arrangement of the experimental 
setup. 

 

Note that in the experimental studies of the 
backscattering peak on water suspensions of particles the 
interference pattern, formed as a result of the interference 
between the scattered waves diverging from separate 
particles, is automatically averaged due to the particle 
motion.  The pattern observed corresponds to the 
intensity, averaged over particle positions in the medium.  
In this case the scattering particles are immovable, 
therefore instead of the mean radiation intensity we 
observed the chaotic speckle-structure requiring statistical 
averaging.  As an illustration, Fig. 2 gives the measured 
pattern of unaveraged spatial intensity distribution when 
reflecting a laser beam from a face of the polystyrene 
plate.  Note that the backscattering peak is represented 
here as a central spot of the speckle-structure, having a 
random shape. 

At the same time, Fig. 2 illustrates also the basic 
physical regularity, considered in this paper, namely, 
this figure shows the influence of dimensions of the 
scattering medium on the shape of the coherent 
scattering peak.  Here Fig. 2a corresponds to the 
vertical position and Fig. 2b corresponds to the 
horizontal position of the plate 1 mm thick.  The 
central spot shows a distinct anisotropy.  In this case 

the spot is extended in the direction perpendicular to 
the plate that corresponds to the influence of the 
transverse size of the medium on the radiation intensity 
coming out from the medium in directions close to the 
backward direction. 
 

 
 

 
 

FIG. 2.  Speckle-structure of backscattered radiation 
for the plate 1 mm thick at vertical (a) and horizontal 
(b)  position of scattering medium.  Digits on the 
coordinate axes denote the conventional numbers of 
elements of photodiode matrix, used in the 
measurements. 
 

In the case of the spherical scattering medium, 
considered in detail in this paper, the averaging of 
speckle-pattern over the positions of scatterers in space is 
made by rotation of spheres relative to the vertical axis.  
The radiation scattered in backward direction, was 
focused by a lens 4 to the input diaphragm of the 
photomultiplier 5 (Fig. 1).  The angular resolution was 
equal to 0.06 mrad.  The photomultiplier was fixed in a 
light proof housing on the table with a micrometer screw 
shifts.  Scanning of scattered light was performed in a 
horizontal plane. A signal from the photomultiplier was 
fed into an integrating voltmeter 6.  The fact that in the 
observation plane the light flux was small presented a 
real difficulty in performing the experiment.  Therefore, 
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for the increase of intensity of the radiation detected, 
the laser beam diameter was selected comparable with 
the diameter d of the sphere.  In our case, small spheres 
(d < 0.8 mm) were illuminated by a Gaussian beam 
0. 44 m in diameter (at the e$1 level).  In this case the 
peaks were recorded with the lens 4 whose focal length 
was f = 490 mm.  Large spheres (d > 0.8 mm) were 
illuminated by a laser beam 0.81 mm in diameter and 
recorded at f = 860 mm.  Simultaneously the extinction 
length l for every sphere was estimated from separate 
measurements of radiation extinction in a sphere. 

The points in Figs. 3 and 4 stand for the typical 
experimental data of the backscattering peak shape for 
the two spheres with different relation between the 
diameter d and the extinction length l.  The data for all 
spheres, obtained in such a form, were processed based on 
the following physical considerations.  As is seen from 
Ref. 3, for the spheres with small optical depth, when 
d <   < l, the backscattering peak shape is close to the 
Fraunhofer diffraction pattern for sphere with the 
diameter d, described by the well-known expression 

 

P1(θ) = [2J1(kdθ/2)/(kdθ/2)]2 ,  (8) 
 

where k is the wave number, and J1 is the Bessel 
function.  The lower curves in Figs. 3 and 4 correspond 
to the function (8).  In this case the experimental data 
are in good agreement with the function (8) at lower 
values of the ratio d/l. 
 

 
 

FIG. 3.  Angular dependence of the backscattering 
peak: d = 0.8 mm; l = 0.12 mm; K = 1.41; 
θ0 = 0.517 mrad; θl = 0.223 mrad; θd = 0.405 mrad. 
 

 

 

FIG. 4.  Angular dependence of the backscattering peak:  
d = 0.7 mm; l = 1.29 mm; K = 1.47; θ0 = 0.436 mrad; 
θl = 0.040 mrad; θd = 0.463 mrad. 

 

For the spheres with larger optical depth d >   > l it 
is evident that the peak shape is determined by the 
radiation intensity distribution in local regions with 
linear dimensions of the order of l and the peak shape 
must not depend essentially on the shape of the 
scattering medium.  In this case the peak shape can be 
approximated by a simple expression known for the 
plane-parallel layer26: 

 

P2(θ) = θ2
l/(θ2

l + θ2), (9) 
 

where θl is the halfwidth of the function (9). 
For the media of an arbitrary optical depth one 

can assume that joint action of the two factors, i.e., 
limitedness of the medium and the finite value of the 
extinction length, can be approximated by a two-
dimensional convolution of the functions (8) and (9).  
The upper solid curve in Figs. 3 and 4 corresponds to 
the convolution of the function (8) with the function 
(9), where the free parameter θl is fitted using the least 
squares method so that the experimental points coincide 
best with a given convolution. 

The experimental data obtained in this way for all 
the spheres considered have been divided into two 
groups.  The first group is represented by the spheres 
with small optical depth d < l.  Here the peak shape of 
coherent scattering is well described by the function 
(8), and the peak halfwidth θ0 corresponds to the 
relationship followed from Eq. (8): 

 

θd = 0.514 λ/d . (10) 
 

The experimental data in Fig. 5 are presented by dots, 
and solid curve stands for the linear dependence 
constructed as the best linear approximation of these 
experimental data.  The proportionality factor obtained 
is equal to 0.504 that is close to theoretical value in 
Eq. (10). 
 

 
 

FIG. 5.  Angular halfwidth of the backscattering peak 
for the spheres of small optical depth. 

 

The second group is represented by the spheres 
with large optical depth.  The data obtained here, as a 
result of the above inversion of the functions (8) and 
(9) convolution, for the peak halfwidth θl show their 
linear dependence (Fig. 6) on the parameter λ/l 

 

θl = 0.065 λ/l .   (11) 
 

similar to the above dependence (4) for the plane-
parallel scattering media. 
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FIG. 6.  Angular halfwidth of the backscattering peak 
for the spheres of large optical depth. 

 
It should be noted that in Ref. 19 for plane-

parallel media with the particle dimensions within 0.2$
2.0 μm the measured proportionality factor in Eq. (11) 
equals 0.0573.  Although we did not carry out special 
measurements estimating the particle size, the practical 
coincidence of these coefficients can be considered as an 
indirect proof of the fact that the particle dimensions in 
our scattering media were in the same interval. 

Thus, the assumption on the influence of the shape 
and dimensions of scattering medium on the peak of 
coherent backscattering as the convolution of the two 
functions, having a physical meaning of the above 
functions (8) and (9), has been confirmed by the 
experimental data obtained. 
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