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The optical transfer operator (OTO) of the atmosphere$ocean system (AOS) 
as a three-dimensional plane layer with the horizontally inhomogeneous reflecting 
and refracting interface between two media is formulated by the method of 
influence functions (IFs) and spatial-frequency characteristics (SFCs) using the 
perturbation theory series. The case is treated first when no splitting into spatial 
and angular variables is used for the refraction and reflection coefficients. Such an 
OTO has the most general form and is expressed in terms of the linear IF and SFC 
of the atmosphere and the ocean. The solution of the problem for the entire AOS is 
reduced to the solution of two problems for each medium. 

 
INTRODUCTION 

 
In this paper, we present the mathematical models 

formulated for detailed description of the process of 
radiative field formation and image transfer in the 
atmosphere$ocean system (AOS) with a horizontally 
inhomogeneous interface. The solar radiation 
propagation in the AOS is commonly described by the 
boundary-value problem of the transfer theory for a 
layer with a nonorthotropic interface between two 
media, when the ocean is modeled as a reflecting 
underlying surface. Generalized solutions of such 
problem in the form of linear and nonlinear functionals, 
with the universal characteristics of the linear transfer 
system being their kernels, are constructed by the 
method of the influence functions (IFs) and spatial 
frequency characteristics (SFCs).1$8 

The functions so constructed establish explicit 
relations between problem solution and the 
characteristics of sources and the reflecting interface, as 
well as outline a œscenarioB at the interface with regard 
to the contribution of multiple scattering in a medium 
and multiple re-reflection from the interface, and the 
scenario transfer through a turbid reflecting and 
absorbing medium. These functionals describe the 
optical transfer operator (OTO) of the atmosphere$
underlying surface system, including the case in which 
spatial and angular dependences in the reflection 
operators cannot be factorized.5$8 

The problems for the AOS with the reflecting and 
transmitting interface are more complicated. For the case 
of a horizontally homogeneous smooth or wavy interface, 
the numerical algorithms have been developed for 
modeling the radiation in the AOS,2,9 and the OTO has 
been formulated by the method of the influence 
functions.10,11 We have developed the  
 

method of the IFs and SFCs as applied to two-medium 
problems with the horizontally inhomogeneous interface 
when spatial and angular dependences cannot be 
separated for the reflection and transmission 
operators.12 

The perturbation theory series and the theory of 
generalized solutions of kinetic equations provide the 
basis for mathematical apparatus of the IF, SFC, and 
OTO models. Here we present new results 
demonstrating how the solution can be obtained for any 
order of multiplicity of radiation interaction with the 
interface and the OTO of AOS can be constructed with 
regard to multiple scattering in each medium with the 
help of universal linear transfer characteristics: the IFs 
of the atmosphere (Θa) and the ocean (Θoc) or 
corresponding SFCs of the atmosphere (ψa) and the 
ocean (ψoc). 

We have derived the most general representation 
of the OTO of AOS, from which a particular 
representation in any (linear and nonlinear) 
approximations can be found. The reduction of the 
solution of one boundary-value problem of transfer  
for the two-medium AOS to the solution of two 
boundary-value problems for each medium separately 
and the formulation of the OTO in the matrix form 
with the two-component vector of IF Θ = {Θa, Θoc}  
or SFC ψ = {ψa, ψoc} as a kernel are crucially new 
results in the approach proposed here. For the first time 
this approach was proposed by us in Refs. 2  
and 10$12. 

The mathematical models of IF, SFC, and OTO 
constructed here allow one to develop new algorithms 
for remote sensing of the AOS, theory of vision and 
image transfer in a turbid media, as well as numerical 
simulation of radiation fields in the AOS illuminated 
by the Sun or other source. 
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FORMULATION OF THE PROBLEM 
 

Let us consider a plane layer infinite in horizontal 
direction ($∞ < x, y < ∞) of finite height (0 ≤ z ≤ H), 
which is illuminated in any way (from the top, from 
the bottom, or from the inside). At the level z = h 
within the layer, the interface between two media is 
located, which reflects and transmits the radiation. The 
underlying surface is at the bottom (z = H). The 
system atmosphere$interface$ocean$bottom is 
considered as nonmultiplicative (without 
multiplication). 

The direction of radiation propagation is specified 
by vector s = (μ, ϕ), μ = cosϑ, μ ∈ [$1,1] on unit 
sphere Ω = [$1,1]×[0, 2π], where ϑ ∈ [0, 180°] is the 
zenith angle counted off from the positive direction of 
the z axis, ϕ ∈ [0, 2π] is the azimuth angle counted off 
from the x axis. The value ϕ = 0 is in the plane of solar 
vertical, being coincident with the XOZ plane. The 
solar flux is incident on the layer boundary z = 0 in the 
direction s0 = (μ0, ϕ0) with the zenith angle 
ϑ0 ∈ [0, 90°], μ0 = cosϑ0, and the azimuth angle ϕ0 = 0. 
For downward transmitted radiation we introduce the 
hemisphere of directions Ω+= {(μ, ϕ):μ > 0}, and for 
upward reflected radiation - the hemisphere Ω$

={(μ, ϕ):μ <0}, Ω=Ω+∪Ω$. 
The boundary conditions are written using the 

following sets: 
 

Γ0 = {(z, r⊥, s): z = 0, s ∈ Ω+},  
ΓH = {(z, r⊥, s): z = H, s ∈ Ω$}, 

Γ+
h = {(z, r⊥, s): z = h, s ∈ Ω+},  

Γ$
h = {(z, r⊥, s): z = h, s ∈ Ω$}. 

 

The radiation passage through the interface is 

described by the reflection (R̂1 and R̂2) and 

transmission (T̂12 and T̂21) operators, where subscript 1 
is for the upper layer (usually, the atmosphere), and 
subscript 2 is for the lower layer (the ocean): 

 

[R̂1 Φ](h, r⊥, s) = ⌡⌠
Ω+

 
 Φ(h, r⊥, s+)q1(r⊥, s, s+)ds+,  

s ∈ Ω$, (1) 

 [R̂2 Φ] (h, r⊥, s) = ⌡⌠
Ω$

 
 Φ(h, r⊥, s$) q2(r⊥, s, s$) ds$,  

s ∈ Ω+, (2) 
 

[T̂12 Φ] (h, r⊥, s) = ⌡⌠
Ω+

 
 Φ(h, r⊥, s+) t12(r⊥, s, s+) ds+,  

s ∈ Ω+, (3) 

[T̂21 Φ] (h, r⊥, s) = ⌡⌠
Ω$

 
 Φ(h, r⊥, s$) t21(r⊥, s, s$) ds$,  

s ∈ Ω$. (4) 
 

Optical properties of the atmosphere and the ocean 
are described by the altitude profiles of the total 

extinction coefficient σt(z) = σs(z) + σabs(z), absorption 
coefficient σabs(z), total scattering coefficient σs(z) = 
= σa(z) + σm(z), which includes the aerosol (hydrosol) 
σa(z) and molecular σm(z) components, and the total 
scattering phase function (χ is the scattering angle):  

 

γ(z, χ) = 

σa(z) γa(z, χ)

σs(z)
 + 

σm(z) γm(χ)

σs(z)
 , 

 

which in general comprises the aerosol (hydrosol) 
γa(z, χ) and molecular (Rayleigh) γm(χ) = 
= 3(1$cos2x)/(16π) components. 

The integral operator of the kinetic equation K̂ ≡ D̂

 $ Ŝ includes the collision integral  
 

ŜΦ ≡ σs(z) ⌡⌠
Ω

 
 Φγ ds′  

 

and the transfer operator  
 

D̂ ≡ (s, grad) + σt(z) = 

= D̂z + sinϑ cosϕ 
∂

∂x + sinϑ sinϕ 
∂

∂y . 
 

In 1D case,  
 

K̂z ≡ D̂z $ Ŝ, D̂z ≡ μ 
∂
∂z + σt(z). 

 
ON THE SEPARATION INTO CONTRIBUTIONS 
FROM THE ATMOSPHERE AND THE OCEAN 

 
The radiation propagation in the atmosphere$ocean 

system with the interface is described by the general 
boundary-value problem of the  transfer theory2: 
 

⎩⎪
⎨
⎪⎧ >K̂Φ = Fb,  Φ*Γ0

 = f0,  Φ*ΓH
 = fH + R̂H Φ,

Φ*Γ+
h
 = R̂2 Φ + T̂12 Φ + f +h,  Φ*Γ$

h
 = R̂1 Φ + T̂21 Φ + f $h,

  
 (5) 

where Fb, f0, fH, f 
+
h, and f 

$
h are possible sources of 

radiation. A single event of radiation interaction with 
reflecting bottom is described by the operator 
 

[R̂H Φ](H, r⊥, s) ≡ ⌡⌠
Ω+

 
 Φ(H, r⊥, s+) qH(r⊥, s, s+) ds+. (6) 

 
Here, we do not detail the reflection and transmission 
operators, and use only their general form. 

Because the boundary-value problem (5) is linear 
with respect to sources, the net radiation field of the 
system can be considered as superposition of solutions 
to a set of boundary-value problems of type (5) with 
one of the radiation sources Fb, f0, fH, f 

+
h, and f 

$
h, 

respectively. Using the case in which the system is 
illuminated by the solar flux as an example, we show 
how the initial boundary-value problem of the transfer 
theory can be separated into the boundary-value 
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problems for the components of the light field: 
Φ = Φ0 + Φa + ΦaR + Φoc + Φq. 

In the case of system illumination by the solar flux 
(fH = Fb = f 

+
h = f 

$
h = 0), the direct attenuated radiation 

Φ0 is sought as the solution to the Cauchy problem: 
 

{D̂z Φ
0 = 0,   Φ0*Γ0

 = π Sλ δ(s $ s0),   Φ*Γ$
h
 = 0 (7) 

 

for the upper layer z∈[0, h] and Φ0 ≠ 0 only for s = s0. 
The background radiation of the atmosphere Φa is 

sought as the solution of a 1D problem for a plane 
layer z∈[0, h] with zero boundary conditions: 
 

{K̂z Φa = Ŝ Φ0,   Φa*Γ0
 = 0,   Φa*Γ$

h
 = 0. (8) 

 

The radiation of the atmosphere reflected from the 
interface is sought as the solution of the boundary-
value problem for the layer z∈[0, h] with the source at 
z = h: 
 

{K̂ ΦaR = 0,  ΦaR*Γ0
 = 0,  ΦaR*Γ$

h
 = R̂1 ΦaR +R̂1(Φ0+ Φa).  

(9) 

In more detail, ΦaR = Φ0
aR + Φd

aR.  The component Φ0
aR 

describes the contribution into the atmospheric haze 
due to scattering, within the upper layer, of the direct 
flux reflected from the interface (z∈[0, h]): 
 

{K̂ Φ0
aR = 0, Φ0

aR*Γ0
 = 0, Φ0

aR*Γ$
h

 = R̂1 Φ0
aR +R̂1 Φ0. (10) 

 

Because of atmospheric scattering of the haze 
diffuse component reflected from the interface, the 

component Φd
aR is formed, which is the solution of the 

problem (z∈[0, h]) 
 

{K̂ Φd
aR = 0,  Φd

aR*Γ0
 = 0, Φd

aR*Γ$
h
  = R̂1 Φd

aR +R̂1 Φa. (11) 
 

The radiation formed in the atmosphere is incident 
on the interface (z = h) and is the source of the 
component Φoc of the system light field (the ocean 
takes part in the formation of this component; Φoc ≠ 0 
for z∈[0; H]): 
 

⎩
⎨
⎧ >

K̂Φoc=0, Φoc*Γ0
=0, Φoc*ΓH

=0, 

Φoc*Γ$
h

  = R̂1 Φoc + T̂21 Φoc,        

Φoc*Γ+
h
=R̂2 Φoc+T̂12 Φoc+T̂12 (Φ0+Φa+ΦaR).

(12) 

 

For detailed consideration, the superposition 
 

Φoc = Φ0
oc + Φd

oc,  Φ
d
oc = Φa

oc + ΦaR
oc , 

 

may be introduced, in which the brightness field 
components caused by the influence of the direct  
solar radiation Φ0

oc (problem (12) with the source  

T̂12(Φ0 + Φ0
aR)) and the atmospheric haze Φd

oc (problem 

(12) with the source T̂12(Φa + Φd
aR)) are separated. 

The contribution of illumination from the 
reflecting ocean bottom can be found as a solution of 
the boundary-value problem  
 

⎩⎪
⎨
⎪⎧ >K̂Φq = 0,  Φq*Γ0

 = 0,  Φq*ΓH
 = R̂H Φq + EH,

Φq*Γ+
h
 = R̂2 Φq + T̂12 Φq,  Φq*Γ$

h
 = R̂1 Φq + T̂21 Φq,

  
(13) 

in which the bottom illumination EH = R̂H Φoc serves 
as a source. 
 

EQUATIONS FOR INFLUENCE FUNCTIONS  
OF THE ATMOSPHERE AND THE OCEAN  

AND OPTICAL TRANSFER OPERATOR 
 

The solutions of the 1D boundary-value problems 
of the transfer theory for direct solar radiation given by 
Eq. (7) and for atmospheric haze given by Eq. (8) are 
well known.2 The 3D and 1D boundary-value problems 
given by Eqs. (9)$(11), in which the ocean was 
considered as a reflecting nonorthotropic or Lambertian 
surface, were studied in Refs. 1$8. The light field 

components Φ0
aR, Φd

aR, and ΦaR are calculated in terms 
of the influence function of the atmosphere Θa(s$;z, 
r⊥, s) being the solution of the boundary-value problem 
 

{K̂ Θa = 0,   Θa*Γ0
 = 0,   Θa*Γ$

h
 = fδ (s

$; r⊥, s) (14) 
 

with the source 
 

fδ(s
$; r⊥, s) ≡ δ(r⊥) δ(s $ s$). (15) 

 

The boundary-value problem for finding the 
individual components of radiation in the system 
formed under the effect of multiply scattered radiation 
in the ocean can be written in general as  
 

⎩⎪
⎨
⎪⎧ >K̂Φoc=0, Φoc*Γ0

=0, Φoc*Γ$
h
=η(R̂1 Φoc+T̂21 Φoc+Ea),

Φoc*Γ+
h
=η(R̂2 Φoc+T̂12 Φoc+Eoc),  Φoc*ΓH

=0,
  

(16) 
where as sources of radiation serve the ocean 
illumination from the top (from the atmosphere) 
Eoc(r⊥, s) and the atmosphere illumination from the 
bottom (from the ocean) Ea(r⊥, s). 

The solution to the problem (16) is sought as a 
perturbation series 
 

Φoc(z, r⊥, s) = ∑
n = 1

∞
 ηn Φn(z, r⊥, s), (17) 

 

with the parameter η indicating the act of radiation 
passage through the interface. Let us introduce the two-
component vectors 
 

Φn = {Φa,n, Φoc,n},  E = {Ea, Eoc},  Θ = {Θa, Θoc}. (18) 
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In the linear approximation (n = 1), the boundary-
value problem with two sources Ea and Eoc 
 

⎩
⎨
⎧ >K̂Φ1 = 0,  Φ1*Γ0

 = 0,  Φ1*ΓH
 = 0,

Φ1*Γ+
h
 = Eoc,  Φ1*Γ$

h
 = Ea

 (19) 

 

is separated into two boundary-value problems: for the 
ocean (z∈[h, H]) 
 

{K̂ Φoc,1 = 0,   Φoc,1*ΓH
 = 0,   Φoc,1*Γ+

h
 = Eoc (20) 

 
and for the atmosphere (z∈[0, h]) 
 

{K̂ Φa,1 = 0,   Φa,1*Γ0
 = 0,   Φa,1*Γ$

h
 = Ea. (21) 

 

Let us represent the illumination as functionals 
 

Ea(r⊥, s) = 
1
2π ⌡⌠

Ω$

 
 δ(s $ s$) ds$ ⌡⌠

$∞

∞
 
 δ(r⊥ $ r ′⊥) Ea(r ′⊥, s$) dr ′⊥,  

(22) 
 

Eoc(r⊥, s) = 

= 
1
2π ⌡⌠

Ω+

 
 δ(s $ s+) ds+ ⌡⌠

$∞

∞
 
 δ(r⊥ $ r ′⊥) Eoc(r ′⊥, s+) dr ′⊥, (23) 

 

then the solutions to problems (19) and (20) can be 
represented as linear functionals (s∈Ω) 
 

Φa,1(z, r⊥, s) = (Θa, Ea) = 
 

= 
1
2π ⌡⌠

Ω$

 
 ds$1 ⌡⌠

$∞

∞
 
 Θa(s$1; z, r⊥ $ r⊥1, s) Ea(r⊥1, s$1) dr⊥1, 

 

z ∈ [0, h], (24) 
 
Φoc,1(z, r⊥, s) = (Θoc, Eoc) = 
 

= 
1
2π ⌡⌠

Ω+

 
 ds+1 ⌡⌠

$∞

∞
 
 Θoc(s+1; z, r⊥ $ r⊥1, s) Eoc(r⊥1, s+1) dr⊥1,   

z ∈ [h, H]. (25) 
 
The kernels of functionals (24) and (25) are the IF of 
the atmosphere Θa(s$, z, r⊥, s), being the solution of 
boundary-value problem (14), and the IF of the ocean 
Θoc(s+; z, r⊥, s), being the solution of the problem for 
the layer z∈[h, H] 
 

{K̂ Θoc = 0,   Θoc*ΓH
 = 0,   Θoc*Γ+

h
 = fδ(s

+; r⊥, s) (26) 

 
with the source fδ(s

+; r⊥, s) ≡ δ(r⊥) δ(s $ s+). 

For the second and succeeding approximations 
(n ≥ 2) of perturbation series (17), the boundary-value 
problem (z∈[0, H]) 
 

⎩⎪
⎨
⎪⎧ >K̂Φn=0,  Φn*Γ0

 = 0,  Φn*Γ$
h
=R̂1 Φn $ 1+T̂21 Φn $ 1,

Φn*Γ+
h
=R̂2 Φn $ 1+T̂12 Φn $ 1,  Φn*ΓH

=0
  

(27) 
is separated for the sources into two problems: for the 
layer z∈[0, h] 
 

{K̂ Φa,n = 0, Φa,n*Γ0
 = 0, 

Φa,n*Γ$
h
 = R̂1 Φa,n $ 1 + T̂21 Φoc,n $ 1 (28) 

 

and for the layer z∈[h, H] 
 

{K̂ Φoc,n = 0,   Φoc,n*ΓH
 = 0, 

Φoc,n*Γ+
h
 = R̂2 Φoc,n $ 1 + T̂12 Φa,n $ 1. (29) 

 

For the vector function f = {fa(s*; h, r⊥, s), 

foc(s*
; h, r⊥, s)} with the parameters s

*
, let us define the 

linear functional 
 

(Θ, f) = {(Θa, fa), (Θoc, foc)}, (30) 
 

with the components being the linear functionals 
(s∈Ω): 
 

[(Θa, fa)](s*
; z, r⊥, s) ≡ 

≡ 
1
2π ⌡⌠

Ω$

 
 ds$⌡⌠

$∞

∞
 
 Θa(s$; z, r⊥ $ r ′⊥, s) fa(s*

; h, r ′⊥, s$) dr ′⊥,  

z ∈ [0, h], (31) 
 

[(Θoc, foc)](s*
; z, r⊥, s) ≡ 

≡ 
1
2π ⌡⌠

Ω+

 
 ds+ ⌡⌠

$∞

∞
 
 Θoc(s+; z, r⊥ $ r ′⊥, s) foc(s*

; h, r ′⊥, s+) dr ′⊥,   

z ∈ [h, H]. (32) 
 

The parameters s
*
 may be absent in the functions fa and 

foc. 
The interaction of radiation with the interface is 

described by the vector functional, with the kernels 
being the influence functions of the atmosphere and the 
ocean:  
 

[M̂ f](h, r⊥, s) ≡ P̂(Θ, f) = 
⎣
⎢
⎡

⎦
⎥
⎤R̂1(Θa, fa) + T̂21(Θoc, foc)

T̂12(Θa, fa) + R̂2(Θoc, foc)
 ,  

(33) 

where the matrix P̂ is  
 

P̂ ≡ 
⎣
⎢
⎡

⎦
⎥
⎤R̂1 T̂21

T̂12 R̂2

 . 

 

Let us write down the explicit expressions for the 
components of functional (33): 
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[R̂1(Θa, fa)](s*
; h, r⊥, s) = 

 

= ⌡⌠
Ω+

 
 [(Θa, fa)](s*

; h, r⊥, s+) q1(r⊥, s, s+) ds+ = 

= ⌡⌠
Ω+

 
 q1(r⊥, s, s+) ds+ 

1
2π ⌡⌠

Ω$

 
 ds$ ⌡⌠

$∞

∞
 
 fa(s*

; h, r ′⊥, s$) × 

× Θa(s$; h, r⊥ $ r ′⊥, s+) dr ′⊥,   s ∈ Ω$; (34) 
 

[R̂2(Θoc, foc)] (s*
; h, r⊥, s) = 

 

= ⌡⌠
Ω$

 
 [(Θoc, foc)](s*

; h, r⊥, s$) q2(r⊥, s, s$) ds$ = 

= ⌡⌠
Ω$

 
 q2(r⊥, s, s$) ds$ 

1
2π ⌡⌠

Ω+

 
 ds+ ⌡⌠

$∞

∞
 
 foc(s*

; h, r ′⊥, s+) × 

× Θoc(s+; h, r⊥ $ r ′⊥, s$) dr ′⊥,   s ∈ Ω+, (35) 
 

[T̂12(Θa, fa)](s*
; h, r⊥, s) = 

 

= ⌡⌠
Ω+

 
 [(Θa, fa)](s*

; h, r⊥, s+) t12(r⊥, s, s+) ds+ = 

= ⌡⌠
Ω+

 
 t12(r⊥, s, s+) ds+ 

1
2π ⌡⌠

Ω$

 
 ds$ ⌡⌠

$∞

∞
 
 fa(s*

; h, r ′⊥, s$) × 

 

× Θa(s$; h, r⊥ $ r ′⊥, s+) dr ′⊥,   s ∈ Ω+; (36) 
 

[T̂21(Θoc, foc)](s*
; h, r⊥, s) = 

 

= ⌡⌠
Ω$

 
 [(Θoc, foc)](s*

; h, r⊥, s$) t21(r⊥, s, s$) ds$ = 

= ⌡⌠
Ω$

 
 t21 (r⊥, s, s$) ds$ 

1
2π ⌡⌠

Ω+

 
 ds+ ⌡⌠

$∞

∞
 
 foc(s*

; h, r ′⊥, s+) × 

 

× Θoc(s+; h, r⊥ $ r ′⊥, s$) dr ′⊥,   s ∈ Ω$. (37) 
 

For n = 2, the solution to boundary-value problem 
(27) takes the form of two linear functionals for two 
components being the solutions of boundary-value 
problems (28) and (29) 
 

Φa,2 = (Θa, R̂1 Φa,1 + T̂21 Φoc,1) = 

= (Θa, R̂1 Φa,1) + (Θa, T̂21 Φoc,1), 
 

Φoc,2 = (Θoc, R̂2 Φoc,1 + T̂12 Φa,1) = 

= (Θoc, R̂2 Φoc,1) + (Θoc, T̂12 Φa,1). 
 
Using representations (24) and (25), functionals (31) 
and (32), and operator definitions (1)$(4), we derive 

[R̂1 Φa,1](h, r⊥, s) = ⌡⌠
Ω+

 
 q1(r⊥, s, s+1)ds+1 × 

× 
1
2π ⌡⌠

Ω$

 
 ds$1 ⌡⌠

$∞

∞
 
 Θa(s$1;  z, r⊥$r⊥1, s+1) Ea(r⊥1, s$1) dr⊥1 = 

= 
1
2π ⌡⌠

Ω$

 
 ds$1 ⌡⌠

$∞

∞
 
 Ea(r⊥1, s$1) dr⊥1 × 

× ⌡⌠
Ω+

 
 q1(r⊥, s, s+1) Θa(s$1; z, r⊥ $ r⊥1, s+1) ds+1 = R̂1(Θa, Ea), 

 

[T̂21 Φoc,1](h, r⊥, s) = ⌡⌠
Ω$

 
 t21(r⊥, s, s$1) ds$1× 

× 
1
2π ⌡⌠

Ω+

 
 ds+1 ⌡⌠

$∞

∞
 
 Θoc(s+1; z, r⊥ $ r⊥1, s$1) Eoc(r⊥1, s+1) dr⊥1 = 

= 
1
2π ⌡⌠

Ω+

 
 ds+1 ⌡⌠

$∞

∞
 
 Eoc(r⊥, s+1) dr⊥1 × 

× ⌡⌠
Ω$

 
 t21(r⊥, s, s$1) Θoc(s+1; z, r⊥ $ r⊥1, s$1) ds$1 = 

= T̂21(Θoc, Eoc), 
 

[R̂2 Φoc,1](h, r⊥, s) = ⌡⌠
Ω$

 
 q2(r⊥, s, s$1) ds$1 × 

× 
1
2π ⌡⌠

Ω+

 
 ds+1 ⌡⌠

$∞

∞
 
 Eoc(r⊥1, s+1) Θoc(s+1; z, r⊥ $ r⊥1, s$1) dr⊥1 = 

= 
1
2π ⌡⌠

Ω+

 
 ds+1 ⌡⌠

$∞

∞
 
 Eoc(r⊥1, s+1) dr⊥1 × 

× ⌡⌠
Ω$

 
 q2(r⊥, s, s$1) Θoc(s+1; z, r⊥ $ r⊥1, s$1) ds$1 = 

= R̂2(Θoc, Eoc), 
 

[T̂12 Φa,1](h, r⊥, s) = ⌡⌠
Ω+

 
 t12(r⊥, s, s+1) ds+1 × 

× 
1
2π ⌡⌠

Ω$

 
 ds$1 ⌡⌠

$∞

∞
 
 Ea(r⊥1, s$1) Θa(s$1; z, r⊥ $ r⊥1, s+1) dr⊥1 = 

= 
1
2π ⌡⌠

Ω$

 
 ds$1 ⌡⌠

$∞

∞
 
 Ea(r⊥1, s$1) dr⊥1 × 

× ⌡⌠
Ω+

 
 t12(r⊥, s, s+1) Θa(s$1; z, r⊥ $ r⊥1, s+1) ds+1 = T̂12(Θa, Ea). 

 

As is seen, the isoplanarity property is not 
fulfilled; therefore, 
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R̂1(Θa, Ea) ≠ (R̂1 Θa, Ea),  R̂2(Θoc, Eoc) ≠ (R̂2 Θoc, Eoc), 
 

T̂21(Θoc, Eoc) ≠ (T̂21 Θoc, Eoc),  T̂12(Θa, Ea) ≠ (T̂12 Θa, Ea). 
 

The second$order approximation of perturbation 
series (17) can be found in the explicit form as (s ∈ Ω) 
 

Φa,2(z, r⊥, s) = 
1
2π ⌡⌠

Ω$

 
 ds$2 ⌡⌠

$∞

∞
 
 Θa(s$2; z, r⊥ $ r⊥2, s) × 

× [R̂1 Φa,1](h, r⊥2, s$2) dr⊥2 + 

+ 
1
2π ⌡⌠

Ω$

 
 ds$2 ⌡⌠

$∞

∞
 
 Θa(s$2; z, r⊥ $ r⊥2, s) × 

× [T̂21 Φoc,1] (h, r⊥2, s$2) dr⊥2 = 

= 
1
2π ⌡⌠

Ω$

 
 ds$2 ⌡⌠

$∞

∞
 
 Θa(s$2; z, r⊥ $ r⊥2, s) × 

× {[R̂1 (Θa, Ea)](h, r⊥2, s$2) + 
 

+ [T̂21(Θoc, Eoc)] (h, r⊥2, s$2)} dr⊥2 = (Θa, R̂1(Θa, Ea)) + 
 

+ (Θa, T̂21(Θoc, Eoc)),   z ∈ [0, h], 
 

Φoc,2(z, r⊥, s) = 
1
2π ⌡⌠

Ω+

 
 ds+2 ⌡⌠

$∞

∞
 
 Θoc(s+2; z, r⊥ $ r⊥2, s) × 

× [R̂2 Φoc,1] (h, r⊥2, s+2) dr⊥2 + 

+ 
1
2π ⌡⌠

Ω+

 
 ds+2 ⌡⌠

$∞

∞
 
 Θoc(s+2; z, r⊥ $ r⊥2, s) × 

× [T̂12 Φa,1](h, r⊥2, s+2) dr⊥2 = 

= 
1
2π ⌡⌠

Ω+

 
 ds+2 ⌡⌠

$∞

∞
 
 Θoc(s+2; z, r⊥ $ r⊥2, s) × 

×{[R̂2(Θoc, Eoc)](h, r⊥2, s+2) + 
 

+ [T̂12(Θa, Ea)](h, r⊥2, s+2)} dr⊥2 =(Θoc, R̂2(Θoc, Eoc)) + 
 

+ (Θoc, T̂12(Θa, Ea)),   z ∈ [h, H]. 
 
We turn our attention to the following fact: at the 
interface level z = h the components Φa,n and Φoc,n are 
defined for the entire sphere of directions s ∈ Ω. 

Now let us write the first three approximations in 
the vector operator form and use definition (33): 

 

Φ1 = ⎣
⎡

⎦
⎤Φa,1

Φoc,1
 = ⎣

⎡
⎦
⎤(Θa, Ea)

 (Θoc, Eoc)
 = (Θ, E), (38) 

 

F1 = P̂ Φ1 = P̂(Θ, E) = M̂ E, 
 

Φ2 = (Θ, F1) = (Θ, M̂ E) = (Θ, P̂ Φ1) = (Θ, P̂(Θ, E)), 
 

F2 = P̂ Φ2 = P̂(Θ, F1) = M̂ F1 = M̂2 E, 
 

Φ3 = (Θ, F2) = (Θ, P̂ F2) = (Θ, M̂ F1) = (Θ, M̂2 E). 
 

It can be shown that two successive (n$1)th and 
nth approximations are related by the recursion relation 
 

Φn = (Θ, P̂ Φn$1) = (Θ, M̂n$1 E), (39) 
 

which includes matrix operator describing a single 
event of radiation passage through the interface at the 
level z = h with regard for multiple scattering in both 
media. As a result,  
 

Φ = ∑
n = 1

∞
 Φn = (Θ, E) + 

⎝⎜
⎛

⎠⎟
⎞Θ, ∑

n = 1

∞
 M̂n E  = (Θ, Ẑ E), 

Ẑ E ≡ ∑
n = 0

∞
 M̂n E (40) 

 

is the sum of the Neumann series over the multiplicity 
of radiation passage through the interface. The 
solution of boundary-value problem (16) represented 
in the form of functional 
 

Φ = (Θ, Ẑ E) (41) 
 

is the optical transfer operator of the atmosphere$
ocean system. It establishes the explicit relation 
between the radiation measured and scenario (40) at 
the interface. The scenario (40), in its turn, is 
expressed explicitly in terms of the reflection and 
transmission characteristics of the interface at its 
given illumination with the help of the influence 
functions of the atmosphere and the ocean. 
 

EQUATIONS FOR THE SFC OF THE 
ATMOSPHERE AND OCEAN AND THE OPTICAL 

TRANSFER OPERATOR 
 

With the help of the Fourier transform over the 
coordinate r⊥=(x,y)  
 

f
w
(p) ≡ F[f(r⊥)](p) = ⌡⌠

$∞

∞
 
 f(r⊥) exp [i(p, r⊥)] dr⊥ = 

 

= ⌡⌠
 
 ⌡⌠

 
  

∞

$∞ 
f(x, y) exp [i (px x + py y)] dx dy, 

 

where the spatial frequency p=(px, py) takes only real 
values (-∞<px, py<∞), the boundary-value problem 
 

⎩
⎨
⎧ >K̂Φ = Fb,  Φ*Γ0

 = f0,  Φ*ΓH
 = fH,

Φ*Γ+
h
 = f 

+
h,  Φ*Γ$

h
 = f 

$
h

 

 
is reduced to the 1D parametric boundary-value 
problem2 
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⎩⎪
⎨
⎪⎧ >L̂(p) Φ

w
 = F

w
b,  Φ

w
*Γ0

 = f
w
0,  Φ

w
*ΓH

 = f
w
H,

Φ
w
*Γ+

h
 = f

w
 
+
h,  Φ

w
*Γ$

h
 = f

w
 
$
h

 (42) 

 

with the operator 
 

L̂(p) ≡ D̂z $ i(p, s⊥) $ Ŝ,  
(p, s⊥) = px sinϑ cosϕ + py sinϑ sinϕ . 
 

The Fourier transforms are indicated by the symbol œwœ 

atop. The boundary-value problem (42) differs from 
the standard 1D boundary-value problem2 by the 
presence of the anisotropic complex total extinction 
coefficient 
 

σ
w
t(z, p, s⊥) = σt(z) $ i(p, s⊥), 

 

which is p-dependent. If the solar flux (F
w

b = f
w
0 = 

= f
w
H = 0) is the source of radiation, then boundary-

value problem (42) is separated into two problems: for 
the layer z∈[0,h] 
 

{L̂(p) Φ
w
 = 0,   Φ

w
*Γ0

 = 0,   Φ
w
*Γ$

h
 = f

w
 
$
h (43) 

 

and for the layer z∈[h, H] 
 

{L̂(p) Φ
w
 = 0,   Φ

w
*ΓH

 = 0,   Φ
w
*Γ+

h
 = f

w
 
+
h. (44) 

 

As was shown in Refs. 1$8, the solutions  
to boundary-value problems (9)$(11) in the form  

of Fourier transforms of the light field components Φ
w 0

aR

, Φ
w d

aR, and Φ
w

aR, as well as the solution to boundary-
value problem (43), are determined via the spatial 
frequency characteristic of the atmosphere  
Ψa(s$; z, p, s) being the solution of the boundary-value 
problem for the layer z ∈[ 0, h] 
 

{L̂(p) Ψa = 0,   Ψa*Γ0
 = 0,   Ψa*Γ$

h
 = f

w

δ(s
$; p, s), (45) 

f
w

δ(s
$; p, s) = F[fδ(s

$; r⊥, s)] = δ(s $ s$). 
 

The spatial-frequency characteristic and the 
influence function of the atmosphere are related by the 
direct and inverse Fourier transforms over the 
coordinate r⊥: 
 

Ψa(s$; z, p, s) ≡ F[Θa(s$; z, r⊥, s)] = 

= ⌡⌠
$∞

∞
 
 Θa(s$; z, r⊥, s) exp [i(p, r⊥)] dr⊥, 

 

Θa(s$; z, r⊥, s) = F 
$1 [Ψa(s$; z, p, s)] = 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 Ψa(s$; z, p, s) exp [$ i(p, r⊥)] dp. 

We will seek for the solution of boundary-value 
problem (16) in terms of the Fourier transforms. To do 
this, we introduce the perturbation series 
 

Φ
w

oc(z, p, s) = ∑
n = 1

∞
 ηn Φ

w
n(z, p, s) (46) 

 

and two-component vectors 
 

Φ
w

n = {Φ
w

a,n, Φ
w

oc,n}, E
w

n = {E
w

a, E
w

oc}. 
 

Now we write down the Fourier transforms for 
reflection and transmission operators (1)$(4): 
 

[R
w

1Φ
w
] (h, p, s) ≡ F[R̂1 Φ](h, p, s) = 

 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω+

 
 q
w
1(p $ p′, s, s+) Φ

w
(h, p′, s+) ds+ = 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω+

 
 q
w
1 (p′, s, s+) Φ

w
(h, p $ p′, s+) ds+ , 

 

[R
w

2Φ
w
](h, p, s) ≡ F[R̂2 Φ](h, p, s) = 

 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω$

 
 q
w
2(p $ p′, s, s$) Φ

w
(h, p′, s$) ds$ = 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω$

 q
w
2(p′, s, s$) Φ

w
(h, p $ p′, s$) ds$ , 

 

[T
w

12 Φ
w
](h, p, s) ≡ F[T̂12 Φ](h, p, s) = 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω+

 
 Φ
w
(h, p′, s+) t

w
12(p $ p′, s, s+) ds+ = 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω+

 
 Φ
w
(h, p $ p′, s+) t

w
12(p′, s, s+) ds+ , 

 

[T
w

21 Φ
w
](h, p, s) ≡ F[T̂21 Φ](h, p, s) = 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω$

 
 Φ
w
(h, p′, s$) t

w
21(p $ p′, s, s$) ds$ = 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω$

 
 Φ
w
(h, p $ p′, s$) t

w
21(p′, s, s$) ds$ . 

 

In the linear approximation (n=1) boundary-value 
problem (19) in terms of the Fourier transforms is 
separated into two problems: for the ocean (z∈[h, H]) 
 

{L̂(p) Φ
w

oc,1 = 0,   Φ
w

oc,1*ΓH
 = 0,   Φ

w
oc,1*Γ+

h
 = E

w
oc (47) 

 

and for the atmosphere (z∈[0, h]) 
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{L̂(p) Φ
w

a,1 = 0,   Φ
w

a,1*Γ0
 = 0,   Φ

w
a,1*Γ$

h
 = E

w
a. (48) 

 

Let us now find the Fourier transforms of 
functionals (22) and (23) 
 

E
w

a(p, s) = 
1
2π ⌡⌠

Ω$

 
 δ(s $ s$) E

w
a(p, s$) ds$, 

E
w

oc(p, s) = 
1
2π ⌡⌠

Ω+

 
 δ(s $ s+) E

w
oc(p, s+) ds+, 

 

then the solutions of problems (47) and (48) can be 
written in the form of linear functionals (s ∈ Ω) 
 

Φ
w

a,1(z, p, s) = (Ψa, E
w

a) = 

= 
1
2π ⌡⌠

Ω$

 
 Ψa(s$1; z, p, s) E

w
a(p, s$1) ds$1,  z ∈ [0, h], 

 

Φ
w

oc,1(z, p, s) = (Ψoc, E
w

oc) = 

= 
1
2π ⌡⌠

Ω+

 
 Ψoc(s+1; z, p, s) E

w
oc(p, s+1) ds+1,  z ∈ [h, H], 

 

whose kernels are the SFC of the atmosphere  
Ψa(s$; z, p, s), being the solution of boundary-value 
problem (45), and the SFC of the ocean 
 

Ψoc(s+; z, p, s) ≡ F[Θoc(s+; z, r⊥, s)] = 

= ⌡⌠
$∞

∞
 
 Θoc(s+; z, r⊥, s) exp [i(p, r⊥)] dr⊥, 

 

Θoc(s+; z, r⊥, s) = F 
$1 [Ψoc(s+; z, p, s)] = 

= 
1

(2π)2 ⌡⌠
$∞

∞
 
 Ψoc(s+; z, p, s) exp[$ i(p, r⊥)] dp, 

 

which is the solution of the boundary-value problem for 
the layer z ∈ [h, H] 
 

{L̂(p) Ψoc = 0,  Ψoc*ΓH
 = 0,  Ψoc*Γ+

h
 = f

w

δ(s
+; p, s) (49) 

 

with the source  
 

f
w

δ(s
+; p, s) = F[fδ(s

+; r⊥, s)] = δ(s $ s+). 
 

The Fourier transform of the influence vector-
function is the SFC vector 

 

Ψ ≡ F[Θ] = {Ψa, Ψoc}, 
 

whose components are the SFCs of the atmosphere 
Ψa(s$; z, p, s) and the ocean Ψoc(s+; z, p, s). 

For the vector-function f
w
 = {f

w
a(s*; h, p, s),  

f
w
oc(s*; h, p, s)} with the parameters s* let us define the 

vector linear functional (s ∈ Ω): 
 

(Ψ, f
w
) = {(Ψa, f

w
a), (Ψoc, f

w
oc)}, 

 

with the components being the Fourier transforms of 
linear functionals (31) and (32):  
 

[(Ψa, f
w
a)](s*; z, p, s) = F[(Θa, fa)] = 

= 
1
2π ⌡⌠

Ω$

 
 Ψa(s$; z, p, s) f

w
a(s*; h, p, s$) ds$, z ∈ [0, h],  

(50) 

[(Ψoc, f
w
oc)](s*; z, p, s) = F[(Θoc, foc)] = 

= 
1
2π ⌡⌠

Ω+

 
 Ψoc(s+; z, p, s) f

w
oc(s*; h, p, s+) ds+, z ∈ [h, H].  

(51) 
The interaction of radiation with the interface is 

described in terms of the Fourier transforms by the 
functional whose kernels are the SFCs of the 
atmosphere and the ocean 
 

[Q̂ f
w
](h, p, s) ≡ F[P̂ f] = Ĝ(Ψ, f

w
) = 

 

= 
⎣
⎢
⎡

⎦
⎥
⎤R

w
1(Ψa, f

w
a) + T

w
21(Ψoc, f

w
oc)

T
w

12(Ψa, f
w
a) + R

w
2(Ψoc, f

w
oc)

 , (52) 

 

where the operator matrix is  
 

Ĝ ≡ 
⎣
⎢
⎡

⎦
⎥
⎤R

w
1 T

w
21

T
w

12 R
w

2

 . 

 

Let us now take the Fourier transform of Eqs. (34)$
(37) and find the expressions for the components of 
functional (52) in the explicit form  
 

 

F[R̂1(Θa, fa)](s*; h, p, s) = 
1
2π ⌡⌠

Ω$

 
 ds$ ⌡⌠

Ω+

 
 ds+ 

⎩
⎨
⎧

⎭
⎬
⎫1

(2π)2⌡⌠
$∞

∞
 
 q
w
1(p $ p′, s, s+) f

w
a(s*; h, p′, s$) Ψa(s$; z, p′, s+) dp′  = 

= 
1
2π ⌡⌠

Ω$

 
 ds$ 

1

(2π)2 ⌡⌠
$∞

∞
 
 f
w
a(s*; h, p′, s$) dp′ ⌡⌠

Ω+

 
 Ψa(s$; z, p′, s+) qw1(p $ p′, s, s+) ds+ = 

 = 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω+

 
 q
w
1(p $ p′, s, s+) [(Ψa, f

w
a)](s*; h, p′, s+) ds+ = [R

w
1(Ψa, f

w
a)](s*; h, p, s). (53) 
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Similarly we find 
 

F[R̂2(Θoc, foc)](s*; h, p, s) = 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω$

 
 q
w
2(p$ p′, s, s$) [(Ψoc, f

w
oc)](s*; h, p′, s$)ds$ = [R

w
2(Ψoc, f

w
oc)](s*; h, p, s), (54) 

 

F[T̂12(Θa, fa)](s*; h, p, s) = 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω+

 
 t
w
12(p$ p′, s, s+)[(Ψa, f

w
a)](s*; h, p′, s+) ds+ = [T

w
12(Ψa, f

w
a)](s*; h, p, s), (55) 

 

F[T̂21(Θoc, foc)](s*; h, p, s) = 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp′ ⌡⌠

Ω$

 
 t
w
21(p $ p′, s, s$) [(Ψoc, f

w
oc)](s*; h, p′, s$) ds$ = [T

w
21(Ψoc, f

w
oc)](s*; h, p, s).  

(56) 
 

In Eqs. (53)$(56) the condition of isoplanarity is not 
fulfilled; therefore, 
 

R
w

1(Ψa, f
w
a) ≠ (R

w
1 Ψa, f

w
a), R

w
2(Ψoc, f

w
oc) ≠ (R

w
2 Ψoc, f

w
oc), 

 

T
w

21(Ψoc, f
w
oc) ≠ (T

w
21 Ψoc, f

w
oc), T

w
12(Ψa, f

w
a) ≠ (T

w
12 Ψa, f

w
a). 

 
For n = 2 the solution to boundary-value problem 

(28) in terms of the Fourier transforms is determined 
via the SFC Ψa(s$; z, p, s): 

 

Φ
w

a,2(z, p, s) = (Ψa, F[R̂1 Φa,1]) + (Ψa, F[T̂21 Φoc,1]), 
 

whereas the solution of boundary-value problem (29) $ 
via the SFC Ψoc(s$; z, p, s): 
 

Φ
w

oc,2(z, p, s) = (Ψoc, F[R̂2 Φoc,1]) + (Ψoc, F[T̂12 Φa,1]). 
 

In the second approximation, we derive the 
components in the explicit form: 
 

Φ
w

a,2(z, p, s) = 
1
2π ⌡⌠

Ω$

 
 Ψa(s$2; z, p, s) ds$2 × 

× 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp1 ⌡⌠

Ω+

 
 q
w
1(p $ p1, s$2, s+1) × 

× 

⎩
⎨
⎧

⎭
⎬
⎫1

2π ⌡⌠
Ω$

 
 Ψa(s$1; h, p1, s+1) E

w
a(p1, s$1) ds$1  ds+1 + 

+ 
1
2π ⌡⌠

Ω$

 
 Ψa(s$2; z, p, s) ds$2 × 

× 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp1 ⌡⌠

Ω$

 
 t
w
21(p $ p1, s$2, s$1) × 

× 

⎩
⎨
⎧

⎭
⎬
⎫1

2π ⌡⌠
Ω+

 
 Ψoc(s+1; h, p1, s$1) E

w
oc(p1, s+1) ds+1  ds$1 = 

= (Ψa, [R
w

1(Ψa, E
w

a)]) + (Ψoc, [T
w

21(Ψoc, E
w

oc)]); 
 

Φ
w

oc,2(z, p, s) = 
1
2π ⌡⌠

Ω+

 
 Ψoc(s+2; z, p, s) ds+2 × 

× 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp1 ⌡⌠

Ω$

 
 q
w
2(p $ p1, s+2, s$1) × 

× 

⎩
⎨
⎧

⎭
⎬
⎫1

2π ⌡⌠
Ω+

 
 Ψoc(s+1; h, p1, s$1) E

w
oc(p1, s+1) ds+1  ds$1 + 

+ 
1
2π ⌡⌠

Ω+

 
 Ψoc(s+2; z, p, s) ds+2 × 

× 
1

(2π)2 ⌡⌠
$∞

∞
 
 dp1 ⌡⌠

Ω+

 
 t
w
12 (p $ p1, s+2, s+1) × 

× 

⎩
⎨
⎧

⎭
⎬
⎫1

2π ⌡⌠
Ω$

 
 Ψa(s$1; h, p1, s+1) E

w
a(p1, s$1) ds$1  ds+1 = 

= (Ψoc, [R
w

2(Ψoc, E
w

oc)]) + (Ψoc, [T
w

12(Ψa, E
w

a)]). 
 

Let us now write the first three approximations in the 
vector operator form using the definition of 
operation (52): 
 

Φ
w

1 = 
⎣
⎢
⎡

⎦
⎥
⎤Φ

w
a,1

Φ
w

oc,1

 = 
⎣
⎢
⎡

⎦
⎥
⎤(Ψa, E

w
a)

(Ψoc, E
w

oc)
 = (Ψ, E

w
), 

 

F
w

1 = Ĝ Φ
w

1 = Ĝ (Ψ, E
w
) = Q̂ E

w
 , 

 

Φ
w

2 = (Ψ, F
w

1) = (Ψ
w
, Q̂ E

w
) = (Ψ, Ĝ Φ

w
1) = (Ψ, Ĝ(Ψ, E

w
)), 

 

F2 = Ĝ Φ
w

2 = Ĝ (Ψ, F
w

1) = Q̂ F
w

1 = Q̂2 E
w
 , 

 

Φ
w

3 = (Ψ, F
w

2) = (Ψ, Ĝ Φ
w

2) = (Ψ, Q̂ F
w

1) = (Ψ, Q̂2 E
w
). 

 

Two successive (n$1)th and nth approximations are 
related by the recurrence relation 

 

Φ
w

n = (Ψ, Ĝ Φ
w

n$1) = (Ψ, Q̂n$1 E
w
), 
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in which the matrix operator describes a single event of 
the radiation interaction with the interface in terms of 
the Fourier transforms, and the multiple scattering in 
both media is taken into account. As a result, 
 

Φ
w
 = ∑

n = 1

∞
 Φ
w

n = (Ψ, E
w
) + 

⎝⎜
⎛

⎠⎟
⎞Ψ, ∑

n = 1

∞
 Q̂n E

w
 = (Ψ, Ŷ E

w
), 

 

Ŷ E
w
 = ∑

n = 0

∞
 Q̂n E

w
 (57) 

 

is the sum of the Neumann series (in terms of the 
Fourier transforms) over the multiplicity of radiation 
passage through the interface with regard for the 
multiple scattering in both media. The representation  
 

Φ
w
 = (Ψ, Ŷ E

w
) (58) 

 

is the optical transfer operator of the atmosphere$ocean 
system, which establishes the explicit relation between 
the Fourier transform of the radiation to be measured 
and the Fourier transform of scenario (57) at the 
interface. In this case, expression (57) for the scenario 
expresses the explicit relation with the reflection and 
transmission characteristics of the interface at its given 
illumination with the help of the SFCs of the 
atmosphere and the ocean. 
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