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We propose here an operative technique to compute first statistically 

significant readings of the autocorrelation function based on the known double 

FFT.  The speed-up of computations is reached by corresponding replacement of one 

initial reversal FFT by several ones of lower dimensionality.  Two special cases of 

the algorithm proposed are discussed.  Quantitative estimates of the computation 

speed enhancement relative to the standard one are presented. 

 
The necessity to obtain complementary spectral$

correlative information about the object under study 
often exists in experimental investigations.  The 
situation when the required spectral resolution is 
provided only by the whole length of the initial 
realization T is rather typical.  In some cases 
interpolated values of the spectral density are also 
necessary.  For instance, in calculating integral 
spectral characteristics bearing quantitative 
information about wind velocity field in gated volume 
in acoustic sounding of the atmosphere the interval of 
frequency readings is recommended to be 1/2T 

(Ref. 1). 
Here it is worthwhile applying known algorithm2 

when first the spectral density G(k/2T) is calculated 
by discrete Fourier transform (DFT) and then the 
autocorrelation function (ACF) B(rΔt) of the initial 
sample set 

 

B(r Δt) = 
1

L Δt
 ∑
k=0

L$1

 G(k/L Δt) exp(j 2 π k r/L), (1) 

 

where r = 0, 1, ..., L $ 1; L = 2N; N is the number of 
readings, and Δt is the discretization interval of the 
processed realization of length T = NΔt, is calculated 
by the inverse DFT (IDFT).  The efficiency of the 
processing is provided by the application of 
corresponding calculation algorithms; in particular, the 
relation (1) is realized by the inverse fast Fourier 
transform (IFFT).  Here one obtains the estimates of 
all  possible ACF values.  However, in this situation 
only its first R ≈ (0.1 $ 0.15)N readings are 
statistically significant.  Computation of the following 
values leads to unjustified increase in calculation 
volume what is undesirable in operative measurements. 

Let's transform Eq. (1) for calculating only first R 
readings of the ACF.  To do that, let us divide the 
sequence G(k) into R equal parts of the reading length 

M = L/R and, omitting the normalizing factor, write 
Eq. (1) in the form 

 

b(r) = B(r) L Δt = ∑
m=0

R$1

   ∑
k=mM

(m+1)M$1

 G(k) exp(j 2 π k r/L). 

 

Substituting l = k $ mM in the inner sum and changing 
the summation order we obtain 

 

b(r) = ∑
k=0

M$1

 g(r, k) exp(j 2 π k r/L),  

 

r = 0, 1, ..., R $ 1, (2) 
 

where g(r, k) = ∑
m=0

R$1

 G(m M + k) exp(j 2 π m r/L) are the 

kth R$dimensional IDFT of the corresponding spectral 
readings.  In order to calculate them using standard 
IFFT algorithm we suppose that N and R are integer 
multiple to 2 in corresponding power.  Then the value 
M providing statistically significant ACF readings can 
be equal to 16 or 32. 

Let's reduce the volume of computations in 
Eq. (2).  Note that the spectral density G(k) of the 
considered sample is a DFT$even sequence on the 
interval L (according to terminology from Ref. 3), i.e., 
the equality 
 

G(k) = G(L $ k),   k = 1, 2, ..., L/2 $ 1 (3) 
 

is valid.  In particular, it follows that the ACF B(rΔt) 
is DFT$even and real in realization of the relation (1).  
Taking into account Eq. (3), considering the expression 
for g(r, M $ k), and changing the summation index m 
by l = R $ m $ 1 we obtain  
 

g(r, M $ k) = g*(r, k)exp($ j2πr/R),  
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where k = 1, 2, ..., M/2 $ 1, asterisk denotes complex 
conjugate.  Then an important practical property 
follows therefrom, namely, the Hermitian symmetry of 
the summed sequence X(r, k) = g(r, k)exp(j 2 π�k r/L), 
in Eq. (2), with respect to k, i.e., the condition 
X(r, M $ k) = X*(r, k), k = 1, 2, ..., M/2 $ 1 holds.  
This makes it possible to reduce Eq. (2) to a simpler 
form 
 

b(r) = g(r, 0) + X(r, M/2) + 2 ∑
k=1

M/2$1

   Re X(r, k),  

r = 0, 1, ..., R $ 1. 
 

It is also obvious that in the general case g(r, k)  
are Hermitian symmetric sequences with respect  
to the index r as IDFT of real spectral readings 
G(mM + k), i.e., conditions g(R $ r, k) = g*(r, k), 
r = 1, 2, ..., R/2 $ 1 is valid.  It immediately follows 
therefrom that  
 

X(R $ r, k) = X*(r, k)exp(j2πk/M), r = 1, 2,...,R/2$1.   
 

Then the latter expression for b(r) can be presented in 
the form 
 

⎩
⎨
⎧

>

b(r)=g(r, 0)+X(r, M/2)+2 ∑
k=1

M/2$1
 ReX(r, k),

b(R–r)=g*(r, 0)$X*(r, M/2)+2 ∑

k=1

M/2$1
 ReX(R $ r, k),

 

 (4) 
where 
 

r = 1, 2, ..., R/2 $ 1,  
 

Re X(R $ r, k) = Re{X*(r, k) exp(j2πk/M)}.   
 

Let us concretize some values in Eq. (4).  Consider 

g(r, 0) = ∑
m=0

R$1

 G(mM)exp(j2πmr/R).  It is easy to 

demonstrate that DFT$parity of the initial spectral 
readings (3) leads to that of G(mM), m$0, 1,...,R$1.  
It follows therefrom that g(r, 0) is real and DFT$

even.3 
Further, let's consider the value  
 

X(r, M/2) = g(r, M/2) exp(jπr/R),  
 

where  

g(r, M/2) = ∑
m=0

R$1

 G(mM + M/2)exp(j2πmr/R).   

 

In the given case Eq. (3) implies evenness of the 

sequence G(mM + M/2) = Ĝ(m) in the common sense, 

i.e., condition Ĝ(R $ m $ 1) = Ĝ(m), 
m = 0, 1, ... , R/2 holds.  So one can avoid 
straightforward calculations of g(r, M/2) with 
simultaneous reduction of the dimensionality of the 
required IFFT by four times.  Let's present g(r, M/2) 
in the form 

g(r, M/2) = ∑
i=0

3

   ∑
m=0

R/4$1

  G[(4m + i) M + M/2] × 

× exp[j 2π r (4m + i)/R] = ∑
i=0

3

 gi(r) exp(j 2π r/R), (5) 

 

where  
 

gi(r)= ∑
m=0

R/4$1

   G[(4m + i)M + M/2]exp[j 2π mr/(R/4)]  

 

are IDFT of the corresponding spectral sequences; they 
are periodical with the period of R/4 readings, and 
gi(r) = g i*(R/4 $ r), r = 1, 2, ... , R/8 $ 1.  By 
changing the summation index l = R/4 $ m $ 1 in the 
expressions for g2(r) and g3(r), and taking into account 
the property (3) we obtain g2(r) = g1*(r) × 
× exp($ j8πr/R), g

3
(r) = g0*(r)exp($ j8πr/R).  Then 

Eq. (5) for the main period of gi(r) takes the form 
 

g(r, M/2) = 2 [Re β0(r) + Re β1(r)] exp($ jπr/R) , 
 

where  
 

β0(r) = g0(r)exp(j π�r/R), β1(r) = g1(r)exp(j 3 π�r/R),  
 

r = 0, 1, ... , R/4 $ 1.   
 

Therefore, X(r, M/2) = 2[Reβ0(r) + Reβ1(r)] is a 
purely real sequence.  In order to find X(r, M/2) 
when r > R/4 $ 1, we use the above mentioned 
properties of gi(r) and their corollaries:  
 

gi(R/2 $ r) = g i*(r), r = 1, 2, ..., R/8 $ 1;  
 

Imgi(0) = Imgi(R/8) = Imgi(3R/8) = 
 
= Imgi(R/4) = Imgi(R/2) = 0.   
 
At the same time, in order to reduce computation 
volume, we decrease the domain of IDFT gi(r).  
Finally, for r = 1, 2, ..., R/8 $ 1 we obtain 
 

⎩⎪
⎨
⎪⎧

>

Re X(r, M/2)=2[Re β0(r)+Re β1(r)],
Re X(R/4$r, M/2)=
=2[Re {β*

0(r) exp(jπ/4)}+Re {β*
1(r)exp(j 3π/4)}],

Re X(R/4+r, M/2)=
=2[Re{β0(r) exp(jπ/4)}+Re {β1(r) exp(j 3π/4)}],
Re X(R/2$r, M/2)=2 [Im β0(r)$Im β1(r)].

  

(6) 
And for singular points 

 

⎩⎪
⎨
⎪⎧

>

ReX(0, M/2)=2[Reg0(0)+Reg1(0)]

Re X(R/2, M/2)=0,

ReX(R/8, M/2)=

=2[Reg0(R/8) cos(π/8)+Re g1(R/8) cos(3 π/8)],

ReX(R/4, M/2)= 2 [Re g0(0)$Reg1(0)],

ReX(3R/8, M/2)=

=2 [Reg0(R/8) cos(3 π/8)$Reg1(R/8) cos(π/8)].

 

(7) 
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With allowance for the above-mentioned facts the 
final formulas (4) for calculating first R readings of the 
ACF take the form 

 

⎩
⎨
⎧

>

b(r) = Re g(r, 0)+Re X(r, M/2)+2 ∑
k=1

M/2$1
 Re X(r, k),

b(R$r) = Re g(r, 0)$Re X(r, M/2)+2 ∑
k=1

M/2$1
 Re X(R$r, k),

  (8) 

where r = 1, 2, ... , R/2 $ 1.  And for singular points 
 

⎩
⎨
⎧

>

b(0) = Re g(0, 0)+Re X(0, M/2)+2 ∑
k=1

M/2$1
 Re g(0, k),

b(R/2) = Re g(R/2, 0)+2 ∑
k=1

M/2$1
 Re g(R/2, k) cos(πk/M).

 

 (9) 
 
Summing up the above statements we present the 

algorithm in its complete form: 
1. Form M/4 complex sequences of the length  

of R readings from the initial spectral values G(k),  
k = 0, 1, ... , L $ 1, by the following rule 

 

Zi(m) = G(2 i + m M) + j G[(2 i + 1) + m M], 
 

where i = 0, 1, ... , M/4$1, m = 0, 1, ... , R$1. 
2. Calculate M/4 complex IFFT of the 

dimensionality R 
 

zi(r) = ∑
m=0

R$1

 Zi(m) exp(j 2π m r/R),  r = 0, 1,..., R $ 1. 

 

3. Reconstruct separate IFFT g(r, k), k = 0,1,..., 
M/2$1 by full analogy with the same procedure for 
the direct FFT2 
 

Re g(r, 2i) = [Re zi(r) + Re zi(R $ r)]/2, 

Im g(r, 2i) = [Im zi(r) $ Im zi(R $ r)]/2, 

Re g(r, 2i +1) = [Im zi(r) + Im zi(R $ r)]/2, 

Im g(r, 2i +1) = [Re zi(R $ r) $ Re zi(r)]/2, 
 

where r = 1, 2, ... , R/2$1; 
 

Re g(0, 2i) = Re zi(0), Re g(R/2, 2i) = Re zi(R/2), 

Re g(0, 2i +1) = Im zi(0),  

Re g(R/2, 2i +1) = Im zi(R/2). 
 

4. Multiply g(r, k), k = 0,1,..., M/2$1 by phase 
factors, i.e., form 

 

X(r, k) = g(r, k) exp(j 2π k r/L), r = 1, 2,...,R/2$1. 
 

5. For k = M/2 form a complex sequence of the 
length R/4 
 

Z(m) = G[4 m M + M/2] + j G[(4 m + 1) M + M/2] = 
 

= G0(m) + j G1(m), m = 0, 1, ..., R/4$1 

and perform the IFFT of R/4 dimensionality with 
further reconstruction of g0(r) and gi(r), r = 0, 1, ... , 
R/8 by analogy with the point 3 and changing R by 
R/4.  Then, using the relations (6) and (7), obtain 
ReX(r, M/2), r = 0, 1, ... , R/2$1. 

6. Following (8) and (9) calculate first R ACF 
readings. 

In spite of a bulky form of the proposed algorithm 
it is more effective in computations than the classical 
method (1) because of reduction of the number of 
complex multiplications although the number of other 
(but more elementary) operations is larger.  The 
advantage is provided by the change of a single initial 
IFFT (1) by several IFFTs of lower dimensionality.  It 
is also supposed that the sequences of complex 
exponents used in the presented algorithm are 

calculated by known recurrence relations,4 i.e., by a 
single complex multiplication.  Using the relations 
given in Ref. 4 for the volume of computing operations 
of IFFT we obtain the following estimates for the 
number of complex multiplications: P1 ≈ (L/2)log2L 
for the traditional variant (1) and P ≈ (L/8)(log2R + 5) 
for the proposed one.  Hence the expected gain in speed 
γ = P1/P for the values M = 16 or M = 32 used by the 
algorithm and characterizing the reduction of the 
correlation information volume is γ ≈ (3.6$4) times.  
And the actual gain obtained on the basis of direct 
calculations of ACF is less and averages (3.4$3.8) 
times for both variants. 

The particular case of M = 2 in the above$
considered algorithm is also of practical interest.  Here, 
as it follows from Eq. (2), it is necessary to form a 
complex sequence Z(m) = G(2m) + jG(2m + 1), m = 0, 
1, ... , L/2$1 and calculate its L/2$dimensional 
IFFT, i.e., to find z(r), r = 0, 1, ... , L/2$1.  Note 
that G(2m) is a DFT$even sequence, and G(2m + 1) is 
even in the common sense.  Then, using the above 
stated facts, one can demonstrate that in order to 
calculate first R ≤ L/4 ACF readings it is sufficient to 
make the following operations  
 

b(r) = Re g(r, 0) + Re {g(r, 1) exp (j 2π k r/L)},  
r = 0, 1, ..., R $ 1. (10) 
 

 
where  

 

Re g(r, 0) = [Re z(r) + Re z(L/2 $ r)]/2, 

Re g(r, 1) = Im z(r),   

Im g(r, 1) = [Re z(L/2 $ r) $ Re z(r)]/2, 

Re g(0, 0) = Re z(0),  Re g(0, 1) = Im z(0) 
 

for r = 1, 2, ... , R$1. 
 

The main advantage of this method is in its 
simplicity and flexibility in the choice of the number of 
ACF points to be computed.  But it is inferior to the 
main variant (8), (9) in operativeness.  Straightforward 
calculations show that it is 1.9 times slower than the 
algorithm considered above and at the same time faster 
than the standard variant (1) by the same factor. 
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A larger gain can be reached if there is a necessity 
to compute first R points of ACF with rarefying, i.e. 
when r = nRr, n = 0, 1, ... , R/Rr$1, Rr is the step of 
rarefying. This will work good, for instance, in the case 
of sufficiently smooth ACFs.  Then the relation (2) is 
valid for L = Mr Rr again.  But in contrast to the 
previous case we consider the value g(r, k) beyond its 
Nyquist uniqueness interval, namely, at the points 
r = nRr multiple to its period Rr.  Since 
g(nRr/k) = g(0, k), the relation (2) takes the form 

 

b(n Rr) = ∑
k=0

Mr$1

 g(k) exp (j 2π k n/Mr), 

 

n = 0, 1, ..., Mr $1, (11) 
 

where g(k) = ∑
m=0

Rr$1

 G(m Mr + k). 

 

Thus in the general case it is necessary to sum Rr 
corresponding values of the initial spectral density as a 
preliminary and calculate Mr = L/Rr$dimensional 
IFFT in order to obtain only one of Rrth ACF readings.  
In fact, Eq. (11) illustrates the process of overlapping 
of spectral readings when the discretization interval in 
the correlation domain extends as compared with the 
initial one. 

It is easy to demonstrate that the sequence g(k) is 
DFT$even, i.e., g(Mr$k) = g(k), k = 1, 2, ... , Mr/2$1.  
To do that, it is sufficient to substitute  
l = Rr $ m $ 1 into the expression for g(Mr$k) and use 
DFT$evenness of the initial spectral readings (3).  
Therefore, in order to calculate first R/Rr readings of  

the rarefied ACF, one can use the algorithms (8), (9), 
or (10) if L is changed by Mr and R by R/Rr.  And it 
is expedient, when obtaining g(k), to use the initial 
spectral readings corresponding only to positive 
frequencies: 

 

g(0) = G(0) + G(L/2) + 2 ∑
m=1

Rr/2$1

   G(m Mr), 

 

g(Mr/2) = 2 ∑
m=0

Rr/2$1

   G[Mr (m + 1/2)], 

 

g(k) = ∑
m=0

Rr/2$1

   {G(m Mr + k) + G[(m + 1) Mr $ k]},  

 

k = 1, 2, ..., Mr/2 $ 1. 
 

The increase in the speed of computations of the 
rarefied ACF by the proposed method in comparison 
with the classical variant (1) is characterized by the 
value γ ≈ 4Rr. 
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