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Results of theoretical model calculations of sound generation by water drops 
in the process of their evaporation and explosive fragmentation have been presented 
in this paper. Explosive fragmentation of drops has been shown to decrease the 
efficiency of conversion of the light energy absorbed by drops into the acoustic 
wave energy. This fact is primarily explained by the decrease of vapor influx into 
air due to the decreased rate of drop evaporation after its fragmentation. The 
available experimental data on acoustic signals produced by exploding water 
particles have been interpreted. 

 
Phase changes in the liquid aerosols are caused by 

surface evaporation, explosive boiling up, supercritical 
changes, and secondary condensation. These lead to 
perturbation of the air density around particles and 
generation of acoustic waves. In this paper, sound 
generation by water drops in the process of evaporation 
and explosion is modeled theoretically. 

A general formulation of the problem of sound 
generation in a channel of high-power laser radiation 
propagating in an aerosol medium is based on the 
equations of thermohydrodynamics for a biphase 
medium considering the effect of laser radiation. In 
actual practice the aerosol merely perturbs the gas 
dynamic parameters of the air. In this case, the problem 
reduces to the study of the equation for an air medium, 
in which the aerosol contributes only to the function of 
a thermal source, whereas vapors of the particle 
substance, formed in the process of aerosol interaction 
with radiation, are considered solely in the equation of 
state. 

The corresponding linearized equations of 
thermohydrodynamics have the form1 
 
∂ ρ′
∂ t  + ρ0 div(ν′) = 0,  ρ0 

∂ ν′
∂ t  + ∇ p′ = 0, (1) 

 

ρ0 
∂ u′
∂ t  = λT ΔT′ # p0 div(ν′) + Q(r, t), 

 
p′ = Ra ρ0 T′ + Rv ρ′v T0 + Ra ρ′a T0. 
 
The initial conditions are ρ′v(0) = v′(0) = u′(0) = 
= T′(0) = 0. 

Here, perturbations of the parameters of the air 
medium are indicated by the prime, their unperturbed 
values are denoted by the subscript "0," ρa and ρv are 
the air and vapor densities, respectively, p is the  
 

pressure, v is the mass velocity, Q is the thermal source 
function, Ra and Rv are the gas constants for the air 
and vapor, respectively, T is the temperature of the 
medium, λT is the coefficient of thermal conductivity of 
air, and u is the intrinsic energy. 

By standard manipulations, the initial system of 
equations of thermodynamics reduces to two self-
consistent equations 
 

∂ T
∂ t  = 

λT
Cp ρa

 ΔT + 
1

Cp ρa
 
∂ p
∂ t + 

+ 
c2
s Rv

Cp ρa Ra γ1
 
∂ ρv
∂ t  + 

Q
Cp ρa

; 

 

c2
s Δ ⎝

⎛
⎠
⎞p + λT 

∂ T
∂ t  – 

∂2p

∂ t2
 = 

= – 
∂
∂ t ⎣

⎡
⎦
⎤(γ1 $ 1) Q(r, t) $ 

c2
s
γ1

 
∂ ρv
∂ t  , (2) 

 

where cs is the sound velocity. 
By virtue of the above-mentioned remark that 

perturbations of the gas dynamic parameters of air 
caused by aerosol are small, we can neglect the terms 
describing coupling, ∂p/∂t and ∂T/∂t, respectively, in 
Eqs. (2). As a result, the problem reduces to a solution 
of two independent equations: the equation of thermal 
conductivity in gaseous medium and the inhomogeneous 
wave equation for pressure. The latter equation has the 
form: 
 

c2
s Δ p – 

∂2p

∂ t2
 = 

∂
∂ t ⎣

⎡
⎦
⎤(γ1 $ 1) Q(r, t) $ 

c2
s
γ1

 
∂ ρv
∂ t  ≡ 

≡ – 
∂
∂ t F(r, t). (3) 

 

The general solution of Eq. (3) in the wave zone is 
written as 
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p(r, t) = 
1

4π r c2
s
 ⌡⌠
Vr

 
 
∂F(r′, t $ r/cs)

∂ t  dV′, 

 
where integration is performed over the volume VR of 
sound generation. 

The term ∂Q/∂t appearing in the source function 
F(r, t) considers the contribution of thermal 
mechanisms to sound generation by the particle. 
Because temporal scale of thermal conductivity in a gas 
is much larger than the characteristic time of 
interaction,1 we hereafter will ignore the "thermal" 
term in the function F(r, t). Hence it follows that 
 

p(r, t) = 
1

4π r 
1
γ1

 
∂2Mv

∂ t2
 . 

 
Here Mv is the total mass of vapor entering the medium 
during the interaction. 

The variations of density of the medium are due to 
the evaporating drop, therefore, 
 

∂2Mv

∂ t2
 = 

∂
∂ t ⌡⌠

S0

  
 [ j(t)] dS′,  t < td , (4) 

 
where is the time of drop fragmentation, j(t) is the 
vapor mass flux from the surface of the evaporating 
drop, and integrating is performed over its surface S0. 
After explosive fragmentation of the drop into an 
ensemble of fragments the total vapor flux in the 
medium is determined by flux summation over all 
fragments of the drop 
 

∂2Mv

∂ t2
 = ∑ 

⎣
⎢
⎡

⎦
⎥
⎤∂

∂ t ⌡⌠
Si

  
 [j(t)] dS′  ,  t > td . (5) 

 
It follows from expressions (4) and (5) that 

explosive fragmentation of the drop may cause 
variations of the acoustic signal amplitude primarily 
due to change of the rate of particle evaporation after 
its fragmentation. This is primarily explained by the 
fact that, as is well known, the rate of drop 
evaporation (when the radiation intensity remains 
unchanged) decreases with the drop size due to increase 
of thermal losses into the air. In addition, after 
explosive fragmentation of the drop into fragments, the 
evaporation regime changes from gas kintetic to 
diffusion one.2 This is due to change of the condition of 
evaporation, because after the drop fragmentation, 
separating fragments are in the dense vapor–air 
medium, which essentially reduces the rate of their 
evaporation. 

In Ref. 3 we have already pointed out that the 
drop evaporation law can be written in the form  
∂a
∂t = βI(t) before and after explosive fragmentation, 

which corresponds formally to the regular 

quasistationary regime of evaporation.3 Here β has a 
sense of the differential efficiency of evaporation. In 
this case, the ratio of the coefficients β1/β2 is equal to 
~2.2 when a small homogeneously absorbing water drop 
explodes, where β1 is the value of β before explosion 
(evaporation of the initial drop), and β2 is that after 
fragmentation of the drop (Fig. 1). 

 

 
 

FIG. 1. Dependence of differential efficiency of 
evaporation β on the laser energy density in the 
process of evaporation of a water drop (a0 = 3 μm) 
before explosion (1) and after it (2). Curve 3 is for 
regular evaporation of drops. 

 

On the assumption that the drop evaporation is 
weak before its explosion, the amplitude of a sound 
signal can be written as 
 

p1 ≈ 
c2
s
γ1

 a2
0 β1 I0 

d g(t)
d t  ,  t < td , 

 

where I0 is the peak laser pulse intensity, and g(t) is 
the function describing the pulse shape. Hence, after 
the drop fragmentation we obtain 

 

p2 ≈ 
c2
s
γ1

 a2
0 β2 I0 

d g(t)
d t  ,  t > td . 

 

In doing so, we assume ad = a(td) n
1/3
d , where ad 

is the average size of the drop fragments, and nd is their 
number. Hence it follows that p ′1/p ′2 = β1/β2, i.e., 
fragmentation of a large drop into smaller fragments 
leads to the decrease of the total vapor influx into the 
medium and consequently to the decrease of the 
acoustic signal. 

This process is vividly illustrated by Fig. 2, in 
which dependence of the efficiency of conversion of 
radiation energy into that of acoustic wave 
η = Wac/Wab is shown for different initial size of a 
drop in energetic coordinates. The efficiency of 
conversion is defined as the ratio of the acoustic wave 

energy Wac = ⌡⌠
Vi

 
 ⎝
⎛

⎠
⎞p V′

γ1 $ 1 + 
ρ ν 2

2  dV′ to the total energy  
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FIG. 2. Dependence of efficiency of conversion of light 
energy absorbed by a drop into the acoustic energy on 
the laser pulse energy density at a0 = 92 (1), 48 (2), 
and 15 μm (3). The curves are the result of processing 
of experimental data.4 
 

absorbed by the drop Wab = π a2
0 Ka(a0) wp. Here Vi is 

the volume of sound generation, Ka(a0) is the 
absorption efficiency, wp is the laser pulse energy 
density. It is seen from Fig. 2 that the curves have 
their maxima at the fixed value of the parameter wS

p 
determined by the threshold of complete fragmentation 
of the initial drop. In this case, the larger is the drop, 
the higher is the threshold wS

p. 
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