
V.N. Ivanov Vol. 8, No. 11 /November 1995/ Atmos. Oceanic Opt. 905 
 

0235-6880/95/11 905-03 $02.00  © 1995 Institute of Atmospheric Optics 
 

CONVERSION OF THE VISIBLE COHERENT RADIATION INTO THE 

INFRARED ONE 
 

V.N. Ivanov 
 

Omsk State University 

Received April 26, 1995 
 

Scattering of external electromagnetic radiation is considered by an example of 

hydrogen–like atom participating in an oscillation process based on the formalism of 

effective wave functions describing the mixed quantum states. It is shown that the 

additional dipole moment caused by the influence of neighbor atoms results in appearence, 

in the scattered radiation, of the low frequency components with the frequency of atom 

oscillations in a thermostat. 
 

One of the main problems of linear and nonlinear 
optics is the problem on interaction between the radiation 
and the matter. There are some achievements here, 
especially in the nonlinear optics. The methods of 
frequency conversion of the external radiation by crystals 
and molecules are well studied both theoretically and 
experimentally. However, the historical background 
shows that the main attention was paid to the problem of 
the radiation frequency multiplication. The problem on 
downshifting the radiation frequency due to nonlinear 
interaction is significantly less studied. At the same time, 
the laws of conversion of visible radiation into the IR one 
are important especially for applied purposes because they 
determine the energy budget of complex systems. 

This paper is devoted to the study of a possible 
mechanism of downshifting visible radiation to IR by 
an ensemble of atoms or molecules. 

The initial statement is an obvious physical 
assumption that the kinetic degrees of freedom of atoms 
(for example, oscillations) in molecules or crystals 
should affect the scattering of external radiation, 
especially, if one takes into account that, in the general 
case, such oscillations can be synchronious for a group 
of atoms in the lattice sites of a crystal or in the 
neighbor molecules. This synchronization can occur due 
to the photon exchange (when an acoustic wave 
propagates through the medium) or under the effect of 
light with the frequency close to the natural oscillation 
frequencies1 (as will be shown below, such 
electromagnetic radiation appears spontaneously at the 
presence of an acoustic wave). The study of the effect 
of such a kind of cooperative phenomena on the 
scattering spectrum is the subject of this paper. 

To find the conditions for generation of the low 
frequency electromagnetic waves in the medium, it is 
necessary to solve two inter–related problems. First, 
one should find the response of one atom to the 
external electromagnetic field in the case when this 
atom takes part in some collective motion. And second, 
one should find the conditions that are necessary for 
generation of electromagnetic field at Raman 
frequencies by an ensemble of such atoms. 

Let us consider an ensemble of hydrogen–like 
atoms oscillating in some thermostat as an example of 

solving these problems. Such a choice is convenient for 
two reasons. On the one hand, if refer to the ideas and 
final formulas of the Hartree–Fock method,2 such an 
idealization of the problem quite well approximates the 
state of real atoms that are the elements of some 
ensemble. On the other hand, the choice of a 
hydrogen–like atom as a model for calculations makes 
it possible to derive final mathematical expressions that 
do not contain unknown variables, i.e. to derive the 
exact formulas. 

To calculate the microscopic induced dipole 
moment of the hydrogen–like atom oscillating in a 
thermostat, let us use the wave equation for the 
auxiliary wave function averaged over the thermostat 
effect: 
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where α and i are the positive parameters that take 
into account the collisional perturbation of an atom 
(they are assumed to be empirical values); V is the 

atom velocity in the thermostat; P̂ is the pulse 
operator; A and φ are the vector and scalar potentials, 
respectively; e and m are the electron charge and mass. 

Equation (1) is constructed by the method of 
integrals over Feynman trajectories3 as a result of 
averaging the Feynman propagator over the probability of 
occurrence of a random trajectory. One of the ways to 
construct this equation has been described in Ref. 4. 

The total wave function describing the behavior of 
a hydrogen–like atom in the thermostat is connected 
with the solution of Eq. (1) by the relationship5: 

 

Ψ = ψ/〈ψ | ψ〉1/2. (2) 
 

The fact that both the vector–potential of the 
external electromagnetic field and the drift velocity of the 
atom as a whole in the thermostat are included in Eq. (1) 
allows us to describe the state of the quantum system in 
the case of intereference of these external factors 
perturbing the atom. 
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When solving Eq. (1) let us take into account 
that, in comparison with the electronic states of atoms 
and molecules, oscillations make–up a slowly changing 
dynamic subsystem. This fact makes it possible to find 
the wave function satisfying Eq. (1) by means of the 
iteration method considering the oscillation effect in 
the adiabatic approximation. 

Let us make some assumptions related to the 
electromagnetic field whose vector–potential is 
included in Eq. (1). 

Let us assume that the field affecting the atom can 
be represented in the form of superposition of a strong 
plane–polarized monochromatic radiation of the 
frequency close to the frequency of the quantum 
transition from the second level to the first one (we 
assume that the radiation is generated by an external 
source), and quite a weak radiation of all other 
frequencies. The difference between the frequency ω of 
radiation from an external source and the frequency ω21 
of the quantum transition (ε = ω – ω21) satisfies the 
condition 

 

|ε| <  < ω. (3) 
 

in accordance with the assumptions accepted. 
If to pass from the vector–potential to the electric 

field intensity in Eq. (1) and neglect the terms that 
make small corrections to the solution, one can write 
the following expression for the hydrogen–like atom in 
the dipole approximation: 
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Here d is the atomic dipole moment; Z is the nucleus 
charge multiplicity; r is the radius–vector length. 

If to apply the adiabatic approximation to solving 
Eq. (4), then, turning the Z–axis of the local 
coordinate system connected with the atom along the 
direction of oscillations of the vector E of the external 
field, it is easy to obtain the following expression for 
the auxiliary wave function: 
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where Ei are the eigenvalues of the energy of quantum 
states of the hydrogen–like atom, ψi(r) are the 
corresponding eigenfunctions written6 for the atom 
experiencing the collisional disturbance (it is assumed 
that ψ1 = ψ100; ψ2 = ψ200; ψ3 = ψ210). 

Coefficients bi(t) included in Eq. (5) are 
approximately equal to: 

 

b1(t) = A1 exp (β1 t) + A2 exp (β2 t);  (6) 

b3(t) = B1 exp (– β2 t) + B2 exp (– β1 t); (7) 
 

b2(t) = – 
3 a0 m ω0 Vz

4 � Z
 B1 exp (– β2 t) × 

 

× ⎣
⎡

⎦
⎤exp (i ω0 t $ i f0)

i ω0 $ β2
 + 

exp ($ i ω0 t + i f0)
i ω0 + β2

 + 
 

+ B2 exp(– β1 t) ⎣
⎡

⎦
⎤exp(iω0t $ if0)

iω0 $ β1
 + 

exp ($ iω0t + if0)
iω0 + β1

 +c .  

  (8) 
 

There are the following designations in Eqs. (6)–(8): 
α0 is the Bohr radius; Ai, Bi, and Γ are the constants 
determined by the initial conditions, some of them are 
related to each other: 
 

Bi = ie |E0| a0 213/2/(35Z�β2/i) exp (i (K⋅R)) Ai . (9) 
 

The values Vz, ω0, and f0 correspond to the amplitude, 
frequency, and initial phase of the low–frequency 
oscillations of the atom in the thermostat (according to 
the selection rules, only z–component of the amplitude 
is taken into account); βi are the constants that can be 
estimated by the following formulas: 
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if one assumes that the absolute value of the frequency 
difference ε is significantly greater than the width of 
levels and the Stark shift. 

In Eqs. (9)–(11) E0 is the external field 
amplitude at the frequency ω; K is the wave vector of 
the light wave; R is the radius–vector of the atom 
center of mass. 

Taking into account these expressions, one can 
select the low frequency component accurate to the 
values of the greater order of smallness: 

 

〈d
~
(t)〉 = e a0 (9 m Vz a0/Z2 �) cos (ω0 t – f0) (12) 

 

of the dipole moment of a hydrogen–like atom 
 

〈d(t)〉 = 〈ψ(r, t) |d| ψ(r, t)〉/〈ψ(r, t) | ψ(r, t)〉 , (13) 
 

if one assumes the long duration of the action of an 
external radiation (t is significantly greater than the 
lifetime of the excited state). 

This induced dipole moment is caused by the 
interference of the quantum states excited by a light 
wave. 

Here the following should be noted. If one solves 
the Maxwell equation for the light wave of the 
frequency ω propagating in the medium of the 
hydrogen–like atoms under consideration, in the 
approximation of the slowly varying envelope,1 it is 
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easy to obtain, within the accepted assumptions on the 
external field, that this wave coincides with the light 
wave of the external radiation source. 

To derive the expression for the electromagnetic 
wave of the frequency ω0, let us accept some physically 
obvious assumptions. Let us assume that there is some 
synchronization of oscillations of the neighbor atoms. 
The mechanism of such a synchronization has been 
mentioned above. 

In addition, let us take into account the following: 
when solving Eq. (4), we have separated the external 
fields to strong and weak ones. This results in the fact 
that the influence of electromagnetic fields of frequencies 
different from ω0 on the dipole moment of the atom 
practically is not taken into account in the wave function 
(5). Within the approximation chosen, it is possible to 
ignore possible transfer of energy from the waves of 
Raman frequencies to the principal wave. As a result, the 
following expression is correct for the low–frequency 
polarization component excited at a given point: 

 

P(t) = N 〈d
~
(t)〉. (14) 

 

Here N is the number density of atoms at a given point 
that have the same oscillation phase. 

As known,1 in the dipole approximation one can 
write the electric field varying in time at a long 
distance from the ensemble of atoms in the form: 
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Here we introduce the following designations: n is the 
unit vector along the direction of observation, r0 is the 
radius–vector of the point of observation, r1 is the 
radius–vector of the point of the dipole moment. 

To obtain the total wave disturbance created by a 
long object at the point of observation, it is necessary 
to integrate Eq. (15) over the volume occupied by the 
ensemble of atoms. 

Let us accept for certainity that the atom 
oscillations synchronize due to propagation of some 
wave in the medium, i.e. let us assume that f0 changes 
from point to point according to the law: 

 

f0 = K0 ⋅ r1, (16) 
 

where K0 is the wave vector of the synchronization 
wave. 

In addition, let us assume that atoms occupy the 
volume that is a parallelepiped extending from –l to l 
along the x–axis and from –b to b along the y– and 
z–axes (the length along the x–axis is significantly 
greater than the value b). Then one can obtain for the 
electromagnetic wave generated at the frequency ω0 
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where k is the unit vector along the z–axis; and n0i are 
the values determined by the formulas: 

 

n0x = cos α – (c/v0) cos α1; (18) 
n0y = cos β – (c/v0) cos β1; (19) 
n0z = cos γ – (c/v0) cos γ1, (20) 
 
where v0 is the phase speed of the synchronization 
wave; cosα, cosβ and cosγ are the direction cosines of 
the vector n; and cosα1, cosβ1 and cosγ1 are direction 
cosines of the vector K0. 

It is easy to see, that induced electromagnetic 
wave of the frequency ω0 always appears at the 
presence of the wave synchronization. Its amplitude is 
mostly determined by the values of the parameters n0i. 
In the case when these parameters are equal to zero, the 
amplitude takes its maximum value. This condition can 
be interpreted as the synchronization condition for the 
low–frequency electromagnetic wave. However, all 
three parameters cannot be equal to zero for v0 ≠ c. In 
this case the coefficient n0x is most essential. It follows 
from this that when an acoustic wave has been 
generated in the medium containing the hydrogen–like 
atoms, there are the directions where the IR radiation is 
maximum in the presence of an external high–
frequency radiation. 

It is interesting to note that when v0 is equal to 
the light speed, the synchronism conditions are satisfied 
simultaneously for all three parameters. Then the 
amplitude of the wave of the frequency ω0 takes the 
maximum possible value and linearly depends on the 
volume occupied by atoms. 

As a conclusion let us note the following. 
Formally we have considered an ideal problem. 
However, it is quite close to the real conditions of the 
experiments on light scattering. This gives the basis for 
supposition that the results obtained describe one of the 
mechanisms of thermal radiation of the objects 
illuminated by the external radiation source. 

If then one takes into account that the excitation 
of oscillation degrees of freedom of molecules and 
crystals is possible under the effect of low–frequency 
radiation, one can consider this mechanism as one of 
the channels for dissipation of the radiative energy and 
heating the substance. 
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