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A mathematical description is presented for the brightness pattern in the 
image plane produced by radiation incident on a receiving objective due to 
scattering by spherical particles irradiated by a narrow beam of linearly polarized 
radiation. Images formed by scattered radiation passed alternately through a 
polarizer with orthogonal planes of polarization are essentially different and 
anisotropic in azimuth. This phenomenon was first discovered experimentally by 
Canadian researchers Carswell and Pal and is adequately described by the formula 
derived here. The description is given for a stationary source of light in the double-
scattering approximation. 

 
1. The anisotropy of the intensity distribution in 

the image of an ensemble of spherical scattering 
particles produced by backscattered radiation passed 
through a linear polarizer was first pointed out 
experimentally by Pal and Carswell.1 A linearly 
polarized beam was used to irradiate polystyrene 
spherical suspension; the backscattered radiation was 
transmitted through a polarizer, with the transmission 
axis being oriented either parallel or perpendicular to 
the vector of electric field in the initial incident beam, 
and the image of a backscattering volume was then 
produced. The resultant images so produced have 
patterns displayed in Fig. 2a. In Ref. 1 and succeeding 
Ref. 2, a qualitative explanation for the phenomenon 
observed was given as a result of multiple scattering 
being affected by the specific features of single 
scattering of polarized radiation on spherical particles. 
However, Pal and Carswell proposed no mathematical 
description for the brightness distribution in the image 
plane, whereby the phenomenon being studied could be 
interpreted in terms of the parameters relating the 
observed brightness patterns with the characteristics of 
a scattering medium. 

Below we present such mathematical description, 
although extremely simplified, which nevertheless 
encompasses the salient features of the phenomenon 
observed in Ref. 1.  

2. In the paper, we use terms and normalization 
introduced in Ref. 3. For instance, the Stokes vector 
for radiation scattered by a volume scattering element 
dv in a direction ϕ counted off from the wave vector k0 

of incident radiation (in the plane in which the wave 
vectors of incident and scattered radiation lie) at a 
distance R from the scattering volume is described by 
the equation 

 

F s = R
–2 F0 β P(ϕ) s0 dv ,  (1) 

where F0 and F have meanings of the incident and 

scattered flux through unit surface area within unit 
solid angle, β is the volume scattering coefficient, and 
s0 and s are the dimensionless Stokes vectors scaled to 

the intensity and having the form 
 

s = (I1, I2, U, V)T , (2) 
 
where the transposition symbol T indicates that s is the 
column vector. 

In this presentation, I1 and I2 have meanings of 

two cross-polarized components of radiation scaled to 
the total intensity, that is, I1 + I2 = 1. 

With Stokes vector defined by Eq. (2), the 
scattering phase matrix for spherical particles assumes 
the form 

 

P(ϕ) = 
1

4 π 

⎝
⎜
⎛

⎠
⎟
⎞P ′1(ϕ) 0 0 0

0 P ′2(ϕ) 0 0
0 0 P ′3(ϕ) P ′4(ϕ)
0 0 $ P ′4(ϕ) P ′3(ϕ)

 . (3) 

 

In this case, the half–sum [P ′1 + P ′2]/2 represents the 
scattering phase function, since 
 

1
2 n [P′1 (ϕ) + P ′2(ϕ)]dω = 4π.  

 
Equation (1) is written on the assumption that vectors 
s0 and s are defined in coordinate systems referred to 

the scattering plane, i.e., to the plane containing both 
vectors k and k0. 

When the scattering plane is rotated about the 
direction of radiation propagation through an angle ψ 
relative to the coordinate system in which the Stokes 
vector of incident radiation is defined, this last must be  
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transformed to new coordinate system referred to the 
scattering plane. The transformation operator for the 
Stokes vector in the form of Eq. (2) is 

 

K(ψ) = 

⎝
⎜
⎛

⎠
⎟
⎞cos2ψ sin2ψ  1/2 sin2ψ 0

sin2ψ cos2ψ $ 1/2 sin2ψ 0
$sin2ψ  sin2ψ cos2ψ 0

0 0 0 1

 . (4) 

 

The inverse operator follows by replacing ψ by –ψ. The 
angle ψ is considered to be positive for rotation in the 
counterclockwise direction when viewed in the 
direction counter to that of incident radiation. 

3. Expressions for brightness of the image of a 
scattering volume can be derived in the double-
scattering approximation following a scheme used in 
Ref. 4 to derive the equation of laser sensing. 
Specifically, scattering is assumed to occur in a semi-
infinite layer the distance to which is much longer than 
the depth of radiation penetration into the layer. This 
means that the image of the scattering volume can all 
be seen by a small–angle aperture of a receiving 
antenna. The calculation scheme and the notation used 
are explained in Fig. 1. 

 

 
FIG. 1. Scheme of calculating the Stokes vector of 
doubly scattered radiation: x0, y0, z0 are the unit 

vectors of measurement basis referred to the reference 
plane Q0; k0, k1, and k2 are the wave vectors of 

incident, singly and doubly scattered radiation, 
respectively; x, y, z are the unit vectors of basis 
referred to the reference plane Q; dv1 and ϕ are the 

volume scattering element and the scattering angles of 
singly scattered radiation, respectively; dv2 and ξ are 

the same but for doubly scattered radiation; and, θ 
and ψ are the polar and azimuth angles of arrival of 
doubly scattered radiation, respectively. 

 

A laser is located at the origin of coordinates. Its 
radiation is propagated along the z axis. At a distance 
Z0, a uniform semi-infinite scattering medium is 

located. Scattering and attenuation of radiation on a 
path [0, Z0] are neglected.  The Stokes vector of laser 

radiation is defined in coordinate system (x0, y0, z0) 

(Fig. 1), whose x0 axis is chosen so as to coincide with 

the direction of vibration of vector E. Hence we have 

s0 = {1, 0, 0, 0}T . 
 

Single and double scattering events are described 
in plane Q, rotated about the z axis through an 
arbitrary angle ψ with respect to the reference plane 
Q0. So in new coordinate system (x, y, z) the Stokes 

vector is defined by the transformation 
 

s ′0 = K(ψ) s0 , (6) 
 

where K(ψ) is the operator given by Eq. (4), and the 
angle is counted off from the normal to the Q0 plane, 

i.e., from the x0 axis. Now we write down the 

elementary flux due to the first–order scattering by a 
volume scattering element dv1 of extent dz in a 

direction ϕ and the elementary flux due to the second–
order scattering by a volume scattering element dv2 of 

extent dl in a direction θ caused by it (scattering angle 
ξ = π– ϕ + θ). Next, integration over z and l yields 
the net flux arriving at a receiver objective within the 
solid angle ΔψΔθ. Then, the Stokes vector must be 
transformed to coordinate system referred to the Q0 

plane in which the measurement basis is defined. Now, 
since z and y axes are inverted, the operator K(ψ), 
rather than the inverse operator K(–ψ), must be 
applied again. Trajectory sections of incident and 
scattered beam are related as: 

 

r = 
z θ

sin(ϕ $ θ) ,  l = 
z sinϕ

sin(ϕ $ θ) , (7) 

 

considering that sinθ ≈ θ. 
According to Eq. (1), the radiation incident at the 

volume scattering element 
 

dv2= l2 θ Δθ Δψ dl = z3
 sin2ϕ sin

–4(ϕ – θ) θ2Δθ Δψ dϕ (8) 
 

with θ0 being the half–angle of laser beam divergence, 

which was scattered by the volume scattering element 
 

dv1 = π θ0
2 z2 dz , (9) 

 

has the Stokes vector dF1s1 such that 
 

dF1 = Φ0 β z
–2

 θ
–2

 sin2(ϕ – θ) × 

× exp{– β(z – Z0) – β z θ sin(ϕ – θ)} dz  
 

and 
 

s1 = P(ϕ) K(ψ) s0 , (10) 
 

where Φ0 is the laser radiation power. 

The elementary flux given by Eq. (10) is incident 
on the volume scattering element given by Eq. (8) and 
produces at the origin of coordinates the doubly 
scattered flux 

 

d2 F2 s2 = Φ0 β
2 z

–1 P(ξ) P(ϕ) K(ψ) s0 Δθ Δψ × 
 

× exp
⎩
⎨⎧

⎭
⎬⎫$ 

β(z $ Z0) sinϕ
sin(ϕ $ θ)  $ 

β z θ
sin(ϕ $ θ)  dϕ dz , (11) 

 

where P(ξ) = P(π – ϕ + θ). 
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Then, upon integrating Eq. (11) over ϕ and z and 
applying again the operator K(ψ), we derive the Stokes 
vector in the reference coordinate system as a function 
of θ and ψ, namely 

F2 s2 = Φ0 β2
 Δθ Δψ × 

× ⌡⌠
Z0

∞
 
 z

–1
 exp[– β(z – Z0)] K(ψ) f(z, θ) K(ψ) s0 dz , (12) 

 

where 

f = ⌡
⌠

θ

α
 
 
P(ξ) P(ϕ) exp

⎩
⎨⎧

⎭
⎬⎫$ 

β z θ
sin(ϕ $ θ) $ 

β(z $ Z0) sinϕ
sin(ϕ $ θ)  dϕ  

(13) 
and α = arctan zθ/(z – Z0). 

The exponential terms in integrand of Eq. (13) 
represent the weighting functions of the trajectories. 
The trajectories with ϕ < θ will produce no second-
order scattering in the direction θ. Also negligibly 
contributing will be those trajectories for which 
sin(ϕ – θ) <  < βzθ. Quantitatively, this means that the 
radiation coming from the periphery of the scattering 
volume and concentrated within the fast varying 
forward peak of scattering phase function contributes 
insignificantly to the image intensity, while being 
crucial in the scattering in directions confined to 
scattering angles of the order of πθ2

0/4, where θ0 is the 

half–angle of laser beam divergence. For these 
scattering angles, the intensity is estimated in two-
stream approximation and is given by the formula 

 

F2(0) = Φ0 β2
 P(π) P(0) exp(2 β Z0) [Ei1 – Ei2] , (14) 

 

where Ei1 and Ei2 are the integral exponents of the first 
and second orders of the argument 2βZ0. 

Analysis of the above relations yields the following 
approximation obtained by joining the asymptotic 
solutions for ϕ → 0 and ϕ → π/2: 

 

F2(θ, ψ) s2 = Φ0 β Z 0
$1 {P(π) P(0) s0 exp(– θ2/θ0

2) + 
 

 

+ K(ψ)f$ K(ψ) s0 [exp(– β Z0⏐θ⏐) – exp(– θ2/θ0
2)]} , (15) 

where f is the matrix with the elements 
 

f$11 = P1(ξ) P1(ϕ)  , f$22 = P2(ξ) P2(ϕ)  ,  
 

f$33 = f$44 = P3(ξ) P3(ϕ) $ P4(ξ) P4(ϕ)  ,  
 

f$43 = – f$34 = P3(ξ) P4(ϕ) + P4(ξ) P3(ϕ)  . 
 

The other matrix elements are zeros. The bar atop 
indicates that the elements of the matrix f are obtained 
by integration of above products with weighting factors 
given by Eq. (13). We recall that ξ = π – ϕ + θ. 

By multiplying Eq. (15) by the area A of a 
receiving objective and dividing it by the area 

σ = b2θ Δθ Δψ in the image plane, with b being the 
objective focal distance, we obtain 

 

F ′2(θ, ψ) s ′2 = A b
–2 θ

–1 F2(θ, ψ) s2 , 
 
which represents the Stokes vector of doubly scattered 
radiation in the image space. 

As is obvious from Eq. (15), doubly scattered 
radiation consists of two flux components, one of which 
has the maximum intensity at the image center, rapidly 
decaying to its periphery, and the same polarization as 
the radiation incident on a scattering medium. 

Polarization components on the periphery of the 
image are described by the following formulae: 
 

Iz (d, ψ) = 
Φ0 β A
Z0 b d W(d) × 

 

× [f$11 cos
4ψ + f$22 sin

4ψ – 
1
2 f$33 sin

2
2ψ] , (16) 

 

Iz(d, ψ) = 
Φ0 β A
Z0 b d W(d) × 

× [f$11 + f$22 + f$33 /2] sin2
2ψ , (17) 

 

where  

W(d) = [exp(– β′ d) – exp( – d2
/d0

2)] ,  
 

β′ = Z0 β/b , d = ⏐θ⏐ b , d0 = θ0 b . 
 
4. Now let us analyze the brightness patterns 

described by the formulae just obtained. Equation (17) is 
simplest, as it never changes its form: the product of the 
function d = ⏐θ⏐b, symmetrical about the center, and the 
function sin22ψ. Given any intensity at the center, 
intensity contour lines will have the patterns displayed in 
Fig. 2. Qualitatively, such an intensity pattern for the 
cross-polarized component in the image plane agrees with 
all the cases reported in Ref. 1. 

Using formula (17), the maximum diameter of the 
image (at ψ = (2n + 1)π/4, n = 0, 1, 2...) can be 
related with the scattering coefficient of a medium. 
Indeed, assuming the image edge to be at a distance dm 
from the center, where the intensity is decreased to 7% 
of its maximum, we obtain 

 
b = 2 b/dm Z0 . (18) 
 

The image brightness distribution for the parallel 
component given by Eq. (16) shows more complicated 
pattern and depends on the size of scattering spheres. 
This dependence was experimentally manifested in 
Ref. 1 through different image diameters along x and y 
axes. The image diameter along the x axis is shown to 
coincide with that along the y axis for large-sized 
particles (with radii larger than 1 μm) and to be 
smaller than that for smaller particles. We recall that, 
according to the scheme adopted here, the x axis 
coincides with the direction of vibration of the electric 
vector of sounding radiation. From Eq. (16), ratio of 
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brightness at ψ = 0 (along the x axis) to that at 
ψ = π/2 (y axis) is 

 

I|| (θ, 0)/I(θ, π/2) = f$11/ f$22 . 

 

 
 

FIG. 2. Brightness patterns of multiply backscattered 
radiation in the plane of a receiving objective: symbols 
′ and ⎡ denote normal and tangent components of 
linearly polarized radiation (directed vertically in the 
figure plane) from a source, respectively. Experimental 
results obtained in Ref. 1 for laser radiation (at 
λ = 0.63 μm) incident on water suspension of 
polystyrene spherical particles with diameters 
indicated in the figure (a), calculation in the double–
scattering approximation (b). The contour line shows 
the patterns of the intensity at 0.1 of its maximum 
calculated for scattering phase matrix of spherical 
water droplets for Deirmendjian’s C3 cloud3 (with 
d = 4 μm) (1), of droplets for haze H model3 (with 
d = 0.2 μm) (2), and for the Rayleigh scattering phase 
matrix at wavelength λ = 0.7 μm (3). 

 
An estimate made for an ensemble of water–

droplet spheres for Deirmendjian’s to C3 cloud model3 
(with a modal radius of 2 μm) shows that f11 = f22, and 

the resulting brightness pattern corresponds to those 
reported in Ref. 1 for spherical particles 2.02 and 
6.08 μm in diameter. 

For the Rayleigh scattering phase matrix, 
$f11/ f$22 = 1/4, and, thus, the image size along the x 

axis is much smaller than that along the y axis. 
Brightness distribution corresponds to that of Ref. 1 for 
scattering by water suspension of polystyrene spherical 
particles 0.085 μm in diameter. All the other cases 
considered in Ref. 1 are intermediate. However, the 
 

smaller-sized spheres unnecessarily imply the decrease of 
the image diameter along the x axis as compared with 
that along the y axis. For water droplet haze H model, 
for example, f11 > f22, so that the image size along the x 

axis is larger that along the y axis, but the asymmetry is 
very weakly pronounced. It is quite evident that the 
image pattern is influenced not only by the sphere radii, 
but also by the difference between the refractive indices 
of scattering spheres and the medium in which the 
spheres are suspended. 

Summarizing, we note that the geometry of the 
experiment of Ref. 1 seemingly favored recording of 
doubly scattered radiation. The relations established 
herein offer adequate qualitative description for the 
observed phenomenon and relate the image parameters 
with those of the scattering medium. With formulas (16) 
and (17) being approximate, their quantitative 
experimental validation is desirable. It is likely that when 
irradiating a medium with pulsed radiation, brightness 
distribution in the image plane will be dynamic. For 
example, image edge brightening would be expected as a 
radiation pulse penetrates deeper into scattering medium. 
Integrating over time of the order of t = 1/cβ, however, 
will likely smooth the brightness pattern and it will 
differ insignificantly from the stationary case. Therefore, 
salient features of cloud sensing revealed by Pal and 
Carswell2 cannot be explained within the framework of 
approximation adopted here, but could be explained by 
significant contribution of triple scattering. There are 
same qualitative reasons in favor of this assumption; 
however, its mathematical description seems to be 
complicated. Undoubtedly, it is of interest that 
irrespective of significant contributions from the third 
and, possibly, fourth scattering orders, as in the case of 
mist,2 the image brightness distribution remains 
essentially anisotropic in polarized light, though it is 
clear that it must approach its isotropic limit with the 
increase of contributions from higher scattering orders. 
Clearly, this phenomenon can be used for the study of 
disperse media, more so because recording and processing 
of short–exposure images are quite feasible technically. 
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