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A review of models of sound propagation near the ground through a homogeneous 

stationary atmosphere is presented. Existing models of acoustic impedance of the Earth's 

surface are analyzed. 
 

Propagation of acoustic wave near the ground is 
affected by numerous factors among which are the 
impedance and the relief of underlying surface, the 
vertical profiles of the meteorological parameters, the 
atmospheric turbulence, and the directional pattern of 
an acoustic radiation source. At present, a unified 
theory of acoustic wave propagation allowing for 
combined effect of the above factors is lacking. In the 
literature we know (see, for example, Refs. 1–4  
and 21) each factor is analyzed separately. 

In this paper, a review of models of sound 
propagation near the ground on the material of foreign 
press is presented in which sound propagation through 
a homogeneous stationary atmosphere without constant 
gradients of the meteorological parameters is 
considered, and existing models of acoustic impedance 
of the Earth's surface are analyzed. 

 
FIG. 1. Geometry of sound propagation near the 
ground. Here S denotes source and R denotes receiver 
of acoustic radiation. 

 

Let acoustic radiation source be placed at altitude 
zs above the Earth's surface, and a receiver be placed at 
a distance r from the source at altitude zr. Then in 
addition to directly transmitted wave, the wave 
reflected from the underlying surface arrives at a 
receiving point, and the total acoustic pressure at this 
point can be written as1 

 

P = Pα + Rp Pr, (1) 
 

where Pα describes a contribution from directly 
transmitted wave, Pr describes a contribution from 
specularly reflected wave, and Rp is the wave reflection 
coefficient. For monochromatic radiation the phase 
difference between the directly transmitted and 
reflected waves is 

ΔΦ = k (r1 – r2) + Φ, (2) 
 

where Φ is the phase change after reflection from the 
underlying surface. When ΔΦ = 180°, the directly 
transmitted and reflected waves are in antiphase and 
produce an interference minimum. For broadband 
acoustic signal, its spectrum has minima at frequencies 
 

fm = c0 [(2 n + 1) π – Φ] / [2 (r2 – r1)], (3) 
 

where c0 is the sound speed in air. After reflection from 
a hard surface, Φ = 0, while for free surface Φ = π. In 
intermediate case of a porous surface 0 < Φ < π, and 
positions of minima in the received signal spectrum 
depend on the geometry of the experiment and the 
reflection coefficient of the underlying surface 

 

Rp = ⏐Rp ⏐ eiΦ, (4) 
 

which can be expressed as2,3 
 

Rp = 
sin ψ $ (z1 / z2) {1 $ (k21 / k22) cos ψ}1/2

sin ψ + (z1 / z2) {1 $ (k21 / k22) cos ψ}1/2 . (5) 

 

Here ψ is the incidence angle, k1 and k2 are the wave 
numbers, z1 and z2 are the values of acoustic impedance 
of air and underlying surface, respectively, with 
z1 = ρ0c0, where ρ0 is the density of air. For source and 
receiver altitudes small compared with the path length 
ψ → 0, and Eq. (5) at glancing incidence angles has 
the form: 
 

Rp = sin ψ – β / sin ψ + β , (6) 
 

where β = 1/z = z1/z2 is the surface conductivity. 
For spherical sound wave both the directly 

transmitted and reflected waves undergo additional 
attenuation. In this case, the sound pressure level and 
the velocity of particles are expressed in terms of the 
acoustic velocity potential ϕ: 

 

P = i ω ρe ϕ,  u = 
∂ϕ
∂z , (7) 

 

where ω = 2πf; f is the sound frequency, in Hz; and ρe 
is the effective density of underlying surface. The 
velocity potential at the receiving point is1 
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ϕr = 
exp (i k0 r1)

i k0 r1
 + Q 

exp (i k0 r2)
i k0 r2

 , (8) 

 

where k0 = ω/c0 is the wave number in air, and Q is 
the spherical wave reflection coefficient. The acoustic 
potential reduced to a free space can be found from the 
relation 
 

20 log ⏐ϕr / [e
ik0 r1 / r1]⏐. (9) 

 

When zs and zr are much greater than the 
propagation path length, the spherical wave reflection 
coefficient in Eq. (8) can be approximated by the plane 
wave reflection coefficient 

 

Q = Rp, (10) 
 

where Rp is given by Eq. (6). 
At glancing incidence angles ψ < 5° for surface 

with high impedance, Q is approximated by the 
expression1 
 

Q | Rp + (1 – Rp) F(W), (11) 
 

where F(W) is the factor of boundary losses due to 
interaction of the incident spherical wavefront with the 
flat underlying surface given by the formula1 

 

F(W) = 1 + i πW e–W2
 erfc(– i W) . (12) 

 

Here erfc(–iW) is the error function, and W is the 
numerical distance given by the formula 

 

W2 | (1/2) (i k0 r2) (β + cos θ) . (13) 
 

At incidence angles ψ = 0, from Eq. (6) we obtain 
Rp = –1. Equations (8) and (11) are then considerably 
simplified and 

 

ϕr | 2 F(W) e
ik0 r

/r, (14) 
 

where, in accordance with Eq. (13) 
 

W = (1/2) (1 + i) (k0 r)1/2 β. (15) 
 

The second term in Eq. (11) is the correction for 
wavefront sphericity called the ground wave in analogy 
with the term employed in microwave region. For 
⏐W⏐ < 1, that is, for high impedance and short path, 
from Eq. (12) we have 

 

F(W) | 1 + i π W e–W2
. (16) 

 

For long path and low impedance (⏐W⏐ > 1), we 
have 

 

F(W) | 1 + i π W e–W2
 H [– Im(W)] – 

1
2 W2 , (17) 

 

where H(x) is the Heaviside unit function, H(x) = 1 
for x ≥ 0 and H(x) = 0 for x < 0, and Im(W) denotes 
the imaginary part of the numerical distance W. The 
temporal dependence of received signal is assumed 
exponential. After substitution of Eqs. (16) and (17) in 
Eqs. (11) and (8), the following conclusions can be 
drawn. At glancing incidence angles, the acoustic 
pressure level from a point source in the near field is 
inversely proportional to the distance from the source, 

that is, decreases by 6 dB as the distance is doubled. In 
the far field, the sound pressure level is inversely 
proportional to the square of the distance, that is, 
decreases by 12 dB as the distance is doubled. 

The Heaviside unit function in Eq. (17) 
significantly contributes for r > 50 m and f < 300 Hz in 
the case of sound propogation above the surface with 
low impedance, for example, above grass#covered 
ground. After substitution of this function in Eqs.(11) 
and (8) it engenders so#called surface wave, 
decreasing with the square root of the distance in the 
direction of propagation and exponentially with the 
altitude above the ground in the orthogonal direction. 
At glancing incidence angles, this function results in 
the increase of the imaginary part of impedance 

 

Z = X + i Y, (18) 
 

that is, reactivity Y, which becomes greater than the 
real part of the impedance, or resistivity. The sharp 
action of the Heaviside unit function (its switching on 
and off) is due to approximation used in Ref. 1. More 
realistic asymptotic solutions to Eqs. (8), (12), and 
(13), known in the theory of propagation of 
electromagnetic waves as the Weyl#Van der Pol 
solutions were obtained in Refs. 5–8. However, 
comparison of these realistic solutions with results of 
calculations by formulas presented above made in 
Refs. 9 and 10 indicated their insignificant discrepancy. 

The ground wave described by the second term in 
Eq. (11) is caused by incident spherical wavefront 
distortions due to interaction with flat underlying 
surface. The surface wave propagating near the 
boundary between two media is produced by elliptical 
motion of air molecules and their resultant motion 
parallel and perpendicular to a porous surface. The 
surface and ground waves transfer primarily the low#
frequency acoustic radiation at long distances. In this 
case, the surface wave may increase the recorded sound 
pressure level, and its speed is slightly lower than the 
sound speed in air. This wave is observed at glancing 
incident angles above surfaces for which the imaginary 
part of impedance exceeds its real part. It should be 
noted that most surfaces exhibit high real impedance. 

Propagation of sound wave from a directional 
source above the ground was studied in Ref. 11, where 
the acoustic potential of the source was represented as 

 

ϕ0 = ∑
m=0

$

  ∑
n=$m

m

 Cnm h(1)m (k r0) P
önö
m  (cos θ) einΦ , (19) 

 

where h(1)
m

 are the mth order spherical Hankel functions 

of the first kind, P
önö

m
(cosθ) are the associated Lagendre 

polynomials, Cnm are the multiple moments which 
characterize the directional pattern of the source, and 
{r0, θ, Φ} are the spherical coordinates in the system 
whose origin is at (0, 0, zs). 

For surfaces with ⏐W⏐ >  > 1, the received acoustic 
field is a sum of geometric and diffraction fields (or 
directly transmitted, ground, and surface waves). For 



I.A. Razenkov et al. Vol. 8, No. 10 /October 1995/ Atmos. Oceanic Opt. 829 
 

 

surface with pure imaginary conductivity β = –iβ2, 
where β2 > 0, the acoustic potential can be written as 

 

ϕr | –4πiβ2e
–kβ2(z+zs

)

∑
m=0

$

 
  ∑

n=0

m

 
 
 Lnm Pn

m(iβ2) × 

 

× H(1)
n (kr 1+β2

2) ,  (20) 
 

Lnm = Dnm einΦ + (– 1)n D
–nm e

–inΦ , (21) 
 

Dnm = (1/2) Cnm exp(i π (n – m) / 2) , (22) 
 

H(1)
n  is the nth order Hankel function of the first kind. 

Hence, the acoustic field above elastic surface with low 
losses is determined by the surface wave and attenuates 
as the square root of the distance. 

For ⏐W⏐ ~< 1, that is, for moderate numerical 

distances, when kr2 >  >1 and ⏐(β2
–cos2θ)/sin2θ⏐ <   < 1, 

the acoustic potential 
 

ϕr | ϕ0 + ∑
m=0

$

 
 
 
∑

n=$m

m

 
 
 Cnm h(1)m (k r2) P

önö
m  (cos θ) R(θ)

p  einΦ – 

– 
4
ik

 
βF(ω)

 

exp(ikr2)

(cosθ+β) r2
 ∑
m=0

$

 
 
 
∑
n=0

m

 
 
 (– 1)nLnm Pn

m(– β) (23) 

 

is the sum of geometric (the first and the second terms) 
and diffraction (the ground wave described by the third 
term) fields. When supplementary conditions 
 

cos θ <  < ⏐β⏐ and 2 k (z zs) / r1 <  < 1 
 

are satisfied, only the third term remains in Eq. (3), 
that is, sound field becomes pure diffraction one. 

Comparison of Eqs. (20) and (23) with Eqs. (11), 
(16), and (17) indicates that the acoustic field of the 
directional source is not equal to the acoustic field of 
omnidirectional source multiplied by the directional 
pattern but depends nonlineary on the acoustic 
conductivity and the source directional pattern. 

Effect of the underlying surface characteristics on 
propagation of a broadband acoustic signal is illustrated 
by an example of propagation of the jet engine noise 
shown in Fig. 2 borrowed from Ref. 1.  

 

 
 

FIG. 2. Effect of the surface impedance for path of 
length of 347 m in March (small triangles) and October 
(small crosses). Small squares are for snow#covered 
surface. 

Measurements were performed over a silt soil layer 
1 m thick located above a layer of kaolin and over a 
rather thin fertile soil layer 5 cm thick located above a 
dense clay layer. 

Both surfaces were covered with grass. The first 
run of measurements was performed in March and 
October, the second run of measurements – in winter. 
Measurement path was 347 m long. It can be seen from 
the figure that the first interference minimum over the 
snow cover whose thickness varied from 6 to 9 in. is 
deeper and occurs at much lower frequency than the 
first interference minimum over the grass#covered 
surface. 

It is evident from the foregoing that the 
underlying surface affects the propagation of sound 
through the conductivity β. On the basis of the large 
quantity of experimental data Delany and Bazley12 
proposed the semiempirical formula for the acoustic 
impedance 

 

Z = 1/β = 1 + 0.0571 C$0.754
1  + i 0.087 C$0.732

1 , (24) 
 

where C1 = ωρ0/2πσ, and σ is the flow resistivity. 
In the range of acoustic frequencies, 0.01 < C1 < 1. 

The flow resistivity varies within the limits 
10 000 < σ < 20 000 000 rayls (1 rayls = 1 N⋅cm–4), 
and for grass#covered surface σ | 300 000 rayls. 
However, Eq. (24) does not provide satisfactory 
agreement with experimental data. It seems likely that 
this is due to the use of the parameter C1/Ω for 
normalization, where Ω is the porosity of a medium. 
For fibrous materials, Ω ≈ 1 and σ was determined 
experimentally. For soil, Ω ≈ 0.5 or even less. 
However, this model has received wide acceptance due 
to its simplicity. The values of σ for surfaces of 
different types are given in Refs. 3 and 13. It should be 
noted that with an increase in σ the amplitude of this 
minimum decreases and it is shifted toward higher 
frequencies. More correct prediction of sound 
propagation for single#parameter model (24) can be 
made based on preliminary measurements of the 
effective parameter σeff on a short path and its 
subsequent use for prediction of sound propagation at 
long distances. 

The Sievel model1 relates the frequency of 
interference minimum ωm with the porosity Ω and the 
parameter of flow resistivity σ: 

 

Z = Ω (1 + i Ωσ) / (ρ0 ω)1/2, (25) 
 

(ω0/ωm)1/2=0.906 λm+0.268/λm–0.128/λ3
m + 

+ 0.11/λ5
m + ... , (26) 

 

where λm=2π/fm= ωm/C0 zszr and ω0 = 2πf0 = 

= σ2Ω/ρ0. The experimental data shown in Fig. 2 are 
approximated by the Sievel model with fm = 400 Hz. 
For zs = 1.8 m and zr = 1.5 m, this yields f0 = 6494 Hz 
at Ω = 0.4, hence, σ = 122 408 rayls. In accordance 
with formulas (25) and (26), the parameter Z is 
independent of r. This conclusion was experimentally 
confirmed in Ref. 14. 
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However, formulas (24) and (25) do not explain 
different amplitudes of the interference minimum. This 
effect is allowed for the model of an absorbing layer of 
thickness d with acoustically hard backing whose 
impedance is 

 

Zl = Z cot(– i kb d), (27) 
 

where Z is given by Eq. (24), and kb is the complex 
wave number in porous medium which can be found 
from the relation4 

 

kb/k0 = 1 + 0.0978 C$0.693
1  + i 0.189 C$0.618

1 . (28) 
 

Formula (27) describes the two#parameter model of 
the impedance. It was successfully used by  

Rasmussen15 to interprete measurements over grass#
covered surface. 

A model of a porous layer above an acoustically 
harder surface can be recommended for forest 
underlying surface covered with snow or high 
vegetation: 

 

Z = Z1 [{Z2– i Z1 tan(kb d)}/{Z1– i Z2 tan(kb d)}],  
 (29) 
 

where Z1 is the characteristic impedance of the upper 
layer with the wave number kb, and Z2 is the 
characteristic impedance of the lower layer which is 
assumed semi#infinite. This model has three 
parameters. Results of calculations for the above model 
are shown in Fig. 3. 

 
 

FIG. 3. Four models of surface impedance: a) single#parameter model, σ = 10 000 rayls; b) model with variable 
porosity, σ = 62 500 rayls, and α = 100 m–1 (here α is the effective rate of decrease of porosity with increasing 
depth); c) a layer with hard backing, σ = 160 000 rayls, Ω = 0.4, and d = 0.03 m; d) multilayered model with 
σ1 = 100 000 rayls, Ω1 = 0.4, d1 = 0.03 m, σ2 = 300 000 rayls, and Ω2 = 0.2. 

 

Experimental study of the impedance of 
underlying surfaces of different types was performed in 
Refs. 19, 22, and 23. Figure 4 shows the normalized 
impedance of a layer of sand 4.1 cm thick above a hard 
backing measured in Ref. 22 by the technique proposed 
in Ref. 23 which incorporates sound pressure level 
measurements at different distances from the source 
(loudspeaker with a conic horn with an aperture of 
16 cm located at an altitude of 15 cm above the 
ground) along two horizontal paths located at altitudes 
of 2.2 and 4.6 cm above the ground. Maximum 
measuring path length was 1.75 m, measurements were 
taken at 1 cm intervals. 

 
FIG. 4. Experimental dependence of the normalized 
impedance of sandy surface on the angle of wave 
incidence borrowed from Ref. 22. Sound frequency is 
1000 Hz. 
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Effect of porous surface is illustrated by Fig. 5. 
Here the reduced sound pressure level measured above a 
porous pavement (dashed stone, Ω = 30%) and a hard 
asphalt cover is shown. It should be noted that an 
increase in the sound pressure level above the porous 
surface is caused by the surface wave which is amplified 
above the porous surface.22 

 

 
FIG. 5. Experimental frequency dependence of the 
reduced sound pressure level above porous (solid 
curve) and hard (dashed curve) surfaces, 
zs = zr = 0.6 m, and r = 4 m. 
 

Below we present some simple models proposed by 
Attenborough16 on the basis of formulas (25)–(29) and 
recommended for concrete types of the Earth's 
underlying surfaces. 

1. Sand and hard soil without vegetation 
 

Z = 0.218 (σ/f)1/2 (1 + i). (30) 
 

2. Grass cover 
 

Z=0.218 (σ/f)1/2+i [0.218 (σ/f)1/2+9.74 (α/f)], (31) 
 

where α is the effective rate of decrease of porosity Ω 
with increasing depth. Exponential decrease of porosity 
is assumed. 

3. Forest cover 
 

Z = 0.000 82 σ d + i (38.99/(f/d)), (32) 
 

where d is the effective thickness of a layer with hard 
backing. 

For model (31), the reactivity is greater than the 
resistivity, Y > X, and the frequency dependence is 
stronger. For a thin#layer model described by 
Eq. (32), X is independent of f, and Y | 1/f. 

In conclusion, the four#parameter model proposed 
by Thomasson17 should be mentioned, which includes, 
in addition to the parameters σ and Ω, the parameter of 
pore slope describing the angle of deflection of the air 
pore sense from the direction orthogonal to the layer 
boundary and the form factor describing a degree of 
deviation of a typical pore shape from circular cylinder, 
for which it is equal to 0.5. However, this model has 
not yet found widespread use due to the complexity of 
determination of its parameters. 

It also should be noted that all types of 
underlying surfaces under study exhibited local 
reaction, that is, the reflected wave, the incident 
 

wave, and the normal at the point of incidence all lay 
in the same plane, and the acoustic surface impedance 
was assumed independent of the incidence angle. 
Surfaces with low flow resistivity, for example, a layer 
of snow above a porous fertile soil layer 
(σ | 30 000 rayls), exhibits extended reaction. Results 
of experimental investigations of underlying surfaces of 
extended reaction were presented in Refs. 18 and 19. 
For surface of extended reaction, the spherical wave 
reflection coefficient Q is given by Eq. (11), like in the 
case of surface of local reaction, the factor of boundary 
losses F(W) is given by formula (12), and the 
numerical distance is approximated by expression19 
 

W = 2ik1r2κ(k1, k2, ψ) (1/Z)2/[(1–Rp)2 cos2ψ], (33) 
 

where 
 

κ(k1, k2, ψ) = 1 – k21 / k22 cos2ψ , (34) 
 

and Rp is the plane wave reflection coefficient given by 
the formula 
 

Rp = 
Z sin ψ $ [κ(k1, k2, ψ)]1/2

Z sin ψ + [κ(k1, k2, ψ)]1/2 . (35) 

 

The model adequately describes the sound pressure level 
in the case of sound propagation above the surface of 
extended reaction. 

The effect of the underlying surface relief is 
treated by the ray tracing technique for the given 
geometry of the surface. In so doing, the reflection 
coefficient is determined from Eq. (11). A simple 
method for calculation of sound attenuation by a 
rectangular barrier located between the source and the 
receiver was proposed in the Draft International 
Standard.24 By this method, the sound pressure level at 
the receiving point is calculated as a sum of 
contributions of waves emitted by the source and 
propagating along three shortest path, one of which 
passes through the barrier top and two others through 
the barrier sides. A thick barrier is substituted by an 
equivalent thin barrier25 placed at the intersection of 
rays coming from the source and the receiver and 
passing through the corresponding sides of the barrier. 

To evaluate numerically excess attenuation of 
sound by reflectors of finite dimensions (for example, 
by walls of buildings, barriers, and so on) and by 
semi#infinite screens, the methods of the diffraction 
theory are used (see Refs. 26 and 27). 

The effect of surface relief was studied in Refs. 20, 
25, and 28. A model experiment on acoustic 
propagation over countered grass#covered surface with 
finite impedance and σ = 300 000 rayls was performed 
by Hitchins et al.20 Measuring path was 50 m long. The 
underlying surface was inclined, wavy, or hilly. 
Figure 6 shows measurements on the path with a hill 
between the source and the receiver. The hill shape was 
sinusoidal. Additional minimum is seen in the figure for 
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the source located near the ground. It is also seen that 
the underlying surface relief has a marked effect on 
sound wave attenuation, engendering additional 
interference minima. It must be taken into account 
when making prediction of sound wave propagation. 

 

 
FIG. 6. Effect of countered surface: a) path with a 
hill, r = 50 m; b) excess attenuation for zs = zr = 1(1), 
2(2), 3(3), and 4 m(4); c) excess attenuation for zs = 0 
and zr = 0(1), 1(2), 2(3), and 3 m(4). 
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