
634   Atmos. Oceanic Opt.  /August  1995/  Vol. 8,  No. 8 A.V. Prokopov  
 

0235-6880/95/08  634-04  $02.00  © 1995 Institute of Atmospheric Optics 
 

SOME ASPECTS OF THE THEORY OF ASTRONOMICAL REFRACTION IN  

THE EARTH'S ATMOSPHERE 

 

A.V. Prokopov 
 

Scientific–Production Association "Metrologiya", Khar'kov 
Received September 20, 1994 

 
New technique of theoretical treatment of astronomical refraction in three–

dimensional inhomogeneous atmosphere is discussed. This technique is based on 
integral representation of the ray equation, which reduces the refraction problem to 
the solution of algebraic equations for refraction angles and length of any part of the 
ray trajectory bent by the Earth's atmosphere. Using model of spherically layered 
atmosphere as an example it is demonstrated that the proposed technique can yield a 
prescribed accuracy of determination of the refraction within the range of apparent 
zenith angles 0° < z < 90°. 

 

1. INTRODUCTION 

 

Refraction of electromagnetic waves in the 
inhomogeneous Earth's atmosphere is one of the main factors 
restricting the accuracy of observation methods in classical and 
modern astrometry. Despite the long history of studying the 
astronomic refraction,1–3 there are still some problems in the 
theory of this phenomenon. In particular, there is no 
comprehensive theoretical investigation of anomalies in the 
astronomic refraction for the use of three–dimensional 
inhomogeneous Earth's atmosphere, the questions of refraction 
in the near–horizon zone4 are poorly developed. 

Very often the consideration of these questions uses 
a priori analytical models of the three–dimensional 
atmospheric profile enabling exact integration of refraction 
equations,5 or numerical solution of the initial beam equations, 
for instance, by Gartser's scheme.6 However, the accuracy of 
integrated models can be insufficient, and numerical solution 
of the beam equations requires preliminary determination of 
the three–dimensional profile of air refractivity what is not 
always feasible in practice. 

In this connection, we propose in this paper a new 
approach to solving the refraction problems. The aim of this 
approach is to overcome the restrictions of the known methods 
and fill up the gaps in the theory of astronomic refraction in 
the three–dimensional inhomogeneous Earth's atmosphere. 

 
2. GENERAL RELATIONS 

 
Within the framework of the proposed method, we use 

the beam equation of the geometric optics7 
 

d
d σ (n l) = ∇ n , (1) 

 

where ∇ is the gradient operator, n = n(r) is the refractive 

index of air, l = 
dr

dσ is the unit vector tangent to the beam 

trajectory, σ is the beam coordinate, and r is the radius 
vector of a point in the beam. 

Consider the first integral of Eq. (1): 
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where n
0
 and l

0
 are the refractive index of air and the unit 

vector tangent to the beam trajectory at the observation 
point, respectively; n

L
 and l

L
 are analogous parameters at 

the point of intersection of the beam trajectory with the 
upper boundary of the Earth's atmosphere (we assume that 
the beam intersecting this upper boundary surface of the 
Earth's atmosphere propagates then toward the object 
observed already in vacuum along a straight line, the 
direction of which is given by the vector l

L 
); D is the 

length of the beam trajectory section bent in the Earth's 
atmosphere, i.e., the length of the beam trajectory from the 
initial observation point to the point of its intersection with 
the upper boundary of the atmosphere. 

By Euler–Maclaurin expansion8 Eq. (2) can be 
presented in the form9
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where ∇nI = 
d∇n
dσ  , ∇nIII = 

d3∇n
dσ3  , ∇nV = 

d5∇n

dσ5  , ... ; 
d
dσ is 

the differentiation operator with respect to the beam 
coordinate; the indices "0" and "L" denote here, as in the 
above, the observation point and the point of intersection of 
the beam and the upper boundary of the atmosphere, 
respectively. 

Since n
L
 = 1 and ∇n

L
 = ∇n I

L
 = ∇nIII

L
 = ... = 0, by 

definition of the upper boundary of the atmosphere, the 
initial equation of the astronomic refraction (3) can be 
reduced to a simpler form  
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The vector equation (4) corresponds to a system of three 
scalar equations for three unknown values α, α

T 
, and D (it is 

easy to take into consideration the angles α and α
T
 of vertical 

and lateral refraction when writing vector equation (4) in 
terms of projections accounting for the fact that the vector l

L
 

describes the true direction to the object observed while the 
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vector l
0
 – the apparent one; this procedure is described in 

Ref. 10 for the Cartesian coordinate system). 
One should emphasize two important features of 

Eq. (4) as an integral representation of the beam 
equation (1). First, all the coefficients in Eq. (4) are 
determined near the observation point; therefore, in such an 
approach, it is not necessary to find the vertical profile of 
the refractive index of the air in order to calculate the 
refraction. Second, there are no restricting assumptions 
concerning the profile of the refractive index when deriving 
Eq. (4), Eq. (4) is valid under conditions quite common for 
geometric optics approximation,7 so that the profile can be 
sufficiently arbitrary. 

The applicability limits of Eq. (4) depend on the 
number of expansion terms taken into account in its right–
hand side. The simplest situation, when only the first term 
(proportional to D1) of the series in the right–hand side of 
Eq. (4) is taken into account, is considered in Ref. 10 where 
the generalizations of Oriani–Laplace theorem1,11 are 
obtained for the case of three–dimensional inhomogeneous 
atmosphere, i.e., horizontal and lateral refraction anomalies 
connected with horizontal components of the air refractivity 
gradient are determined. The results from Ref. 10 well agree 
with those in Ref. 4 and they are valid for zenith angles 
z < 70°. A wider range of zenith angles is covered in Ref. 12 
where the solution of Eq. (4) was obtained with regard to 
terms proportional to D1, D2, and D4. 

The aim of the present paper is to consider the case of 
arbitrary zenith angles and to obtain the solution taking 
into account an arbitrary number of expansion terms in the 
right–hand side of Eq. (4). 
 

3. REFRACTION IN SPHERICALLY LAYERED 

MODEL OF THE ATMOSPHERE 
 

The necessity of taking into account additional terms 
of the series (4) arises for exact calculations of the 
refraction angle at zenith distances z > 70°. The question 
about its convergence becomes a subject of special 
importance. We consider this question for a spherically 
layered atmosphere when the lateral diffraction is absent 
and the problem is simplified (only the vertical refraction 
angle α and the length D remain unknown). 

In this case n = n(r), ∇n = gr/r, where r is the radius 
vector of a point in spherical coordinate system with the 
origin at the center of the Earth, r = ⏐r⏐ is the distance 
from the center of the Earth to the point with the radius 

vector r, and g = 
dn
dr is the vertical gradient of air 

refractivity. 
Taking into account the fact that in this case the beam 

is a plane curve, the derivative of each order of the value 
∇n with respect to the beam coordinate can be presented in 
the form  
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where (i) = 0, I, II, III, IV, V, ... when i = 0, 1, 2, 3, 4, 
5, ..., and the coefficients R

i
 and L

i
 are defined directly, as a 

result of calculation of the corresponding derivatives of the 
value ∇n. For instance, the obvious formula 
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implies that 
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Furthermore, calculating the derivative 
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where g' = 
dg
dr , we see that 
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By making similar calculations for ∇nIII

0
 we find 
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and so on. 

Then, multiplying Eq. (4) in turn by l
0
 and 

r
0

r
0
 , we 

obtain, taking into account Eq. (5), the system 
 

cos α – n
0
 = A ,  cos(α + z) – n

0
 cos z = B , (6) 

 

where α = arccos(l0 lL) is the angle of vertical refraction; 

z = arccos(l0 
r
0

r
0
) is the apparent zenith distance (zenith 

angle); the values A and B are defined by the relations 
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The system of equations (6) allows one to find the 
unknown values α and D. By introducing the designations 
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D
2  R
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one can conveniently present the solution of this system in 
the form 
 

α = (– 1)karcsin {sin z[n
0
 + T]} + kπ – z , (9) 

 

where k = 0 when 0 ≤ α + z ≤ π/2, k = 1 when 
α + z > π/2, and the value D (the length of a portion of the 
beam trajectory bent in the Earth's atmosphere) 
determining the parameter T can be found by solving the 
algebraic equation 
 

1 = [(n
0
 + T) cos z + S]2 + sin2

 z[n
0
 + T]2 , (10) 

 

where T and S are given by formulas (7) and (8), 
respectively. 

The obtained solution generalizes the particular case of 
the system (6) solution considered in Ref. 12 that takes into 
account only the expansion terms proportional to D, D2, 
and D4 to the general case of arbitrary number of the 
expansion terms. 

Note that one can assume T = 0 when r
0
 → ∞ ("flat 

Earth" approximation); then Eqs. (9) and (10) become 
independent and, by expanding Eq. (9) in a power series 

(n
0
 – 1 Ü 1), we obtain the well–known expression from 

the Oriani–Laplace theorem1,2 
 

α = (n
0
 – 1) tan z , (11) 

 

which is valid according to many numerical calculations, at 
z < 70° with the error not exceeding some tenths of a 
seconds of an arc.11 

For z = 90° the formulas (9) and (10) give the relation 
 

α = ⏐g⏐ D/2 , 
 

formally coinciding with the well–known13 relationship 
used for estimating the geodesic refraction angle along a 
horizontal path of the length D. 

Within the framework of the theory stated in the 
present paper it is easy to estimate analytically the 
applicability criterion of Oriani–Laplace theorem (11). 
Using the above–mentioned formulas (6)–(10) this 
estimation can be presented in the form 
 

tan2
 z Ü ⏐g′⏐ r 

0 
/⏐g⏐ . (12) 

 

For the angles z > 70° when the condition (12) is not 
satisfied, T ≠ 0, and one should solve Eq. (10) in order to 
calculate the refraction α. The number of expansion terms 
to be taken into account in the relations (7) and (8) 
depends on the accuracy of the refraction angle calculations 
and the convergence rate of the series (7) and (8). 

Let us consider the question of convergence in the most 
unfavorable case when z = 90° (note that the canonical 
expansion of the classical refraction integral diverges when 
z = 90° (Ref. 1)). In the given case R

0
 = g, R

1
 = R

3
 = ... = 0, 

and the system of equations (6) has the form 
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– sin α = g 
D
2  . (14) 

 

By determining D from Eq. (14) and substituting it 
into Eq. (13), after expanding cos α and sin α in power 

series (α Ü 1), we obtain  
 

0 = (n
0
 – 1) + α2 B 

2
 + α4 B 

4
 + α6 B 

6
 + ... , (15) 

 

where  
 

B
2
 = 

1
2 + 

L
1

3⏐g⏐2 ;  B4
 = – 

1
24 – 

L
1

9⏐g⏐2 – 
L

3

45⏐g⏐4 ; 

 

B 
6
 = 

1
720 + 

2
135 ⎣

⎢
⎡ 

 

L
1

⏐g⏐2 + 
L

3

⏐g⏐4
⎦
⎥
⎤ 

 
 + 

2
945 

L
5

 ⏐g⏐6 ;  ⏐g⏐ = – g . 

 

Approximate estimations of the coefficients in Eq. (15) 
made for standard (polytropic) atmospheric model and 
λ = 0.59 μm, r

0
 = 6367.5 km give the following values of the 

parameters: B
2
 g –1.51, B

4
 g –0.55⋅104, B

6
 g –0.22⋅108, and 

(n
0
 – 1) g 2.77⋅10–4. Taking into account that α g 2000", 

i.e., α g 10–2 (Ref. 1) when z = 90°, and substituting the 
values of α, (n

0
 – 1), B

2 
, B

4 
, and B

6
 into Eq. (15), we 

obtain a convergent numerical series 
 

0 g 2.77⋅10–4 – 1.51⋅10–4 – 0.55⋅10–4 – 0.22⋅10–4 – ... . (16) 
 

Thus, from Eq. (16) one can immediately see that even 
in the most unfavorable situation with respect to the 
convergence conditions (when z = 90°) the series in the right–
hand side of Eq. (15), which describes the refraction angle α, 
converges. 

The convergence of the obtained expansions is illustrated 
in Fig. 1 in which the dependences of the refraction angle α 
on the zenith distance z are presented. The curve 1 gives here 
the exact values of α obtained by numerical integration; the 
curve 2 shows the results of calculations by formulas (7)–(10) 
with regard to terms proportional to D, D2, and D4; the 
curve 3 is obtained with regard to terms proportional to D, 
D2, D4, and D6; the curve 4 is calculated by the formula (11). 
All the calculations have been performed using the aforesaid 
numerical values of the parameters used in estimation of the 
coefficients in Eq. (15). One can see that the dependence (9) 
obtained in the present paper for the refraction angle tends to 
the exact solution with the increase of expansion terms taken 
into account in Eqs. (7) and (8). 
 

 
 

FIG. 1. The astronomic refraction angle α vs. the zenith 
distance z: exact calculation (1), calculation by 
formulas (7)–(10) with regard to terms proportional to 
D, D2, and D4 (2), similar calculation with regard to 
terms proportional to D, D2, D4, and D6 (3), and 
calculation by formula (11) (curve 4). 
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From Fig. 1 one can also see that the problems on 
convergence become less severe when z < 87 ... 89°. The 
calculations performed made it possible to specify the 
preliminary data12 and to conclude that it is sufficient to 
take into account only the terms with powers of D not more 
than 4 in Eqs. (7)–(10) in order to determine the refraction 
angle with the error no more than 0.5" in the range of 
zenith angles 0° ≤ z ≤ 80° (exceeding by 10° the range in 
which the Oriani–Laplace theorem is valid). 

The calculations also show that the accuracy of the 
formulas (7)–(10) at z < 70° exceeds the accuracy of 
Oriani–Laplace theorem almost by two orders even with 
regard to only the terms proportional to D, D2, and D4. 
 

4. CONCLUSION 
 

Thus, in the present paper a new approach to the 
theoretical solution of the problem on determining 
astronomic refraction in the three–dimensionally 
inhomogeneous Earth's atmosphere is developed. It is shown 
that within the framework of the given approach one can 
provide the given accuracy of the calculation of the vertical 
refraction angle in the whole range of apparent zenith 
angles 0°≤ z ≤ 90° for the model of spherically layered 
atmosphere using only meteorological data obtained near the 
observation point. 

Further development of the discussed approach can be 
connected with a more careful investigation of the possibilities 
of the model of spherically layered atmosphere (in particular, 
on the basis of numerical experiments using actual profiles 
from radiosounding of the atmosphere) and with the 
consideration of the general case of astronomic refraction in 
near–horizon zone for the three–dimensional inhomogeneous 
Earth's atmosphere. It is convenient to use Eq. (4) as an 
initial equation enabling the investigation of horizontal and 
lateral refraction anomalies in this general case. 
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