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A technique is proposed for reconstructing the field of air pollution averaged 
vertically over the height of the atmospheric planetary boundary layer, horizontally 
over the area of a grid cell, and temporally. The technique is based on the numerical 
solution of the pollutant transfer equation with the help of the matrix theory and 
employs the data on emissions of pollutants as well as the climatic data on wind 
velocity and precipitation. The technique has been implemented at the m×n grid nodes 
(m, n = 12), and the results of reconstructing the sulphurous gas concentration in 
January and July over Eastern States of the U.S.A and adjoining area of the Atlantic 
Ocean have been presented. 

 
INTRODUCTION 

 
Air, soil, and water pollution by the waste products of 

industrial, agricultural, and other anthropogenic origin has 
a strong adverse effect on the ecology of individual districts 
and large geographical regions.  

Because of this, increasingly much attention is devoted 
to environmental monitoring through the development of an 
integrated system of observations and theoretical estimates 
of environmental state.2,4,13,14,16  

In Russia, this purpose is met through the special 
Program on Ecological Safety of Russia. As a result of its 
implementation, Russia will be divided into regions 
according to the degree of ecological hazard.5 When done on 
a global scale, such study makes it possible to reveal the 
statistical models of ecologically homogeneous regions, as 
was done in Ref. 9, for example, for temperature and some 
gaseous components of the atmosphere. Noteworthy, this 
study can be accomplished successfully using 
geoinformational approaches.10  

Still considered as highly promising are the methods of 
estimating the ecological situation, particularly of air 
pollution level, based on the physico–mathematical models 
of pollutant transfer implemented on a 
computer.4,6,11,15,17,18 However, an estimate of the level of 
air pollution in the regions (such as oceanic and polar) in 
which the pollutant concentration does not measured at all, 
presents serious problem. 

The present paper proposes a method for reconstructing 
time– and space–average air pollution field over such 
regions with the availability of climatic data. The method 
employs numerical solution3 of the pollutant transfer 
equation as well as the matrix theory.7,8,12  

 
TECHNIQUE FOR RECONSTRUCTING  

THE AIR POLLUTION FIELD 
 
The technique is based on the equation of transfer of 

arbitrary pollutant 
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where s is the volume concentration of the pollutant, εa is 

the rate of generation or removal of the pollutant a in unit 

air volume, k = k(z) and k
1
 are the vertical and horizontal 

turbulent exchange coefficients, wa is the intrinsic vertical 

velocity of the pollutant a, and 
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∂2
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For the purpose of reconstructing the concentration of 
pollutant in the planetary boundary layer (PBL) of height 
H (Ref. 3), we impose the following boundary conditions: 

 

z = H :  w = wa = 0 ,  k = k
1
 = 0 , 

z = 0 :  k 
∂s
∂z – wa s0 = β s

0
 – f

0
 , (2) 

 

where s
0
 is the s value at z = 0, β is the rate of "dry" 

absorption of the pollutant by the Earth's surface, and 
f
0
 = f

0
(x, y) is the upward flow of the pollutant from the 

ground. 
The function εa is given by expression 
 

εa = F – W – R , (3) 

where F is the emission rate of pollution sources, W = σ
2
s 

is the rate of "wet" removal of the pollutant (its washing 
out by precipitation), R = σ

3 
s is the rate of the chemical 

transformation of the given pollutant into the other, and σ
2
 

and σ
3
 are the coefficients. 

To solve Eq. (1) by numerical techniques in a grid 
cell,3 we first integrate it vertically from z = 0 to z = H, 
horizontally from x = –δ/2 to x = δ/2 and from y = –δ/2 
to y = δ/2, with δ = Δx = Δy being the grid step, as well 
as temporally from t = t

1
 to t = t

2
, with time interval t

1
 –

 t
2
 chosen arbitrary as day, month, year, etc. We introduce 

averaging over space and time by the following relations: 
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etc. 
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Integration of Eq. (1) with boundary condition given 
by Eq. (2) on account of Eq. (4), dropping insignificant 
terms, yields the following equation for averages: 

∂ s–

∂t  + u 
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∂x + v 
∂ s–

∂y = – σ
– s– + k

1
 Δ s– + ϕ– , (5) 
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1
H f

–
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We note that in the derivation of Eq. (5) we express s
0
 

in terms of s– as s
0
 = α

0 
s–, with α

0
 = s

0
/ s– being an 

empirical constant. 
When averaging over extended periods of the order of 

month, the derivative ∂s/∂t is negligible in comparison with 
the other terms. Then the above equation reduces to  
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∂s
∂y = – σ s + k

1
 Δ s + ϕ (7) 

(the bar atop is omitted). 
This yields the stationary boundary–value problem that 

can be solved for average values disregarding the vertical 
motion and the turbulence at the PBL top. As to the chemical 
transformation (R) of a given pollutant, it can be accounted 
for in general by assuming a portion of the incoming pollutant 
to be transformed into the other constituents just after 
entering the atmosphere. This way, (1 – γ) F and (1 – γ) f

0
 

are used in place of F and f
0
, with γ being the transforming 

portion of the examined pollutant (γ ≈ 0.1). Accordingly, the 
variable σ in Eq. (7) can be represented as 

 

σ = σ
1
 + σ

2
 , 

where σ
1
 = (β/H) α

0 
and σ

2
 = α*I (I is the precipitation 

intensity, α* is a coefficient). The ratio β/H = k
abs

 can be 

interpreted as the coefficient of "dry" absorption of the 
pollutant by the surface, while σ

2
 = k

wash
 as the coefficient 

of its washing out by precipitation.11  
 

MATHEMATICAL IMPLEMENTATION OF THE 

MODEL 
 
We now replace differential equation (7) of the 

stationary boundary–value problem with its corresponding 
finite–difference analog.3,7 For this, let us introduce a grid 
of points (see Fig. 1) and a new coordinate system j = x/δ 
and i = –y/δ, where δ = Δx = Δy. We note that 
introducing this notation, in the subsequent matrix analysis 
i and j will denote columns and rows of the rectangular 
matrix Aij. The derivatives with respect to x and y in terms 

of the centered difference become3,7  
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In this case differential equation (7) transforms into its 
finite–difference analog 
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which upon multiplying by δ2/k
1
 and collecting terms 

becomes 
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The coefficients of variables sij beyond the calculation 

region differ from those within it (see Fig. 1, i = 0, m + 1 
and j = 0, n + 1) and are extrapolated from the latter by 
the formula  

 

f(x) = f(x
0
) + (df/dx)x = x0

 Δx . 

 

FIG. 1. Calculational grid cells. Dashed curve marks the 
region for calculation of m×n derivatives sij .  

For left–most row (except for the corner points), with 
the use of this expression we derive 

 

f(j = 0) = f(j = 1) – (2 f(j = 2) – f(j = 1) δ)/δ = 
= 2 f(j = 1) – f(j = 2). 
 

More generally, we obtain 
 

fi, j=0
 = q

1
 fi, j=1

 – q
2
 fi, j=2

 , 
 

where q
1
 and q

2
 are coefficients.  

Equation (9) is a system of m×n linear algebraic 
equations with m×n unknowns. In matrix notation, it is 
written as 

 

A x = b , (11) 
 

where A is the square matrix (m =
 
n), 
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and b is the matrix of right–hand sides of the equation, 
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The elements of matrices Ai j and bi k are determined by the 

coefficients ai j , bi j , etc., from equation (10) as well as by 

the expression for ϕi j . 

A solution to the system of equations (9) and (11) can 
be expressed in the form7,12 

 

x = A–1 b , 

where A–1 is the inverse matrix such that  
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where E is the unit matrix of the form7,12 
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is related to the sought–after matrix xik(sik) as 
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whose i, j th element is the sum of products of the 

elements of ith row of matrix A–1 and kth column of the 
matrix b.  

The matrix of the sought–after unknowns can be 
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Computionally, most difficult problem is to find the 
inverse matrix A–1. The efficient inversion procedure was 
proposed by Ershov.8 It was repeatedly employed for 
statistical forecast. In that case the initial matrix order was as 
high as 45 (min = 45). 

The inversion proceeds as follows. We first replace the 
initial matrix by the matrix C(0) = A – E(δij), and then 

construct two successive matrices C(1)′, C(1), ... C(n)′, 
C(n), ... , whose elements are given by the relations 
 

C(m)′
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i j   (i = m)

δmj  (i = m)
 (i, j = 1, ..., n ; m = 1, ..., n); 
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Matrix C 
m–n is just the derived inverse matrix A–1 of 

the initial matrix A. 
 

PRACTICAL APPLICATION OF THE MODEL 
 

The above–described technique was used to calculate 
the average monthly concentration of sulphurous gas in 
January and July over North–Eastern States of the 
U.S.A. and adjoining area of the Atlantic Ocean (Figs. 2 
and 3) averaged over the PBL height (taken to be 
1.5 km) and over the cross section of the cell of m×n grid 
nodes with a horizontal step size of 250 km (Fig. 1). The 
calculation employed the data on annual emission of 
sulphurous gas as well as the climatic data on wind 
velocity and precipitation. 

The calculated sulphurous gas concentration is 
shown in Figs. 2 (January) and 3 (July). Also shown are 
the fields of 850 hPa isobaric surface1 that were used to 
calculate the PBL–average wind velocities at grid nodes 
along the coordinate axes. 

As is seen from the figures, in both January and 
July, maximum level of pollution occurred in the PBL 
over the North–Eastern States of the U.S.A. in regions 
with developed industry, with the cell–average values of 
sulphurous gas concentration reaching 9 μg/m3. Less 
polluted were the South–Eastern States, with 
concentration of about 3 μg/m3. Over the Ocean, with an 
ecologically clean air, considerable concentration (up to 
3–6 μg/m3) was only found to occur in regions adjoining 
the North–Eastern States. In these regions, about 
3000 km off–shore, pollutants were transported by strong 
(up to 12 m/s) westerlies. The sulphurous gas 
concentration did not exceed 1 μg/m3 over the rest of the 
area of the Ocean. 

 

 
 

FIG. 2. Reconstructed field of air pollution (μg/m3) 
over Eastern States of the U.S.A. and adjoining area of 
the Atlantic Ocean: contours of AT

850
 (hPa) (1) and 

sulphurous gas concentration (2) in January. 
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FIG. 3. Same as in Fig. 2, but for July. 
 

Summarizing, with the method proposed above it is 
possible to estimate the level of pollution in any 
geographic region given the climatic data are available. 
The altitude– and area–average concentration so obtained 
characterizes some background level in the presence of 
sources of anthropogenic pollution in this region or 
nearby. More detailed patterns of pollution may be 
obtained with the use of local models or regional models 
with higher spatial resolution. 
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