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Experimental data are analyzed on statistics of plane wave intensity fluctuations 
within the range of β

0
 parameter values from 6 to 18. Comparative analysis of high–

order moments and histograms with theoretical models is carried out. The experimental 
moments exceed the available asymptotic values and become saturated within the range 
of β

0
 values from 7 to 18 at practically unchangeable level for the relative rms values of β 

fluctuations about 1.16÷1.17. The histograms of instantaneous values of the intensity are 
well approximated by K–distribution. Based on the experimental data the mean number 
of channels, N, for multi–beam propagation through the turbulent atmosphere, is related 
to the value of β

0 
 parameter: N = 6 or 7 for β

0
 = 7 to 18. 

 

During more then twenty years different authors are 

investigating the probability density of the intensity 

fluctuations of optical radiation propagating through the 

turbulent atmosphere. However, up to now no functional form 

of the probability density for extremely saturated intensity 

fluctuations has been established reliably. Several heuristic 

models were proposed, their brief analysis and comparison 

with the experimental data which sum up the preceding 

investigations were carried out in Ref. 1.  

It should be noted that the proposed models were tested 

over an essentially limited range of turbulent conditions of 
propagation (the parameter β0 = 1.21C2

n k7/6 L11/6, where C2
n
 

is the structural constant of the refractive index field; 

k = 2π/λ is the wave number; L is the propagation path 

length). At the same time practically all theoretical 

investigations were devoted to an asymptotic analysis of the 

high–order moments of the intensity fluctuations.2–4 Results 

of these investigations, strictly speaking, are valid for β0 á 1, 

whereas the experimental values of β
0
 did not exceed 7 with 

the rare exception. Moreover, a comparison with the 

experimental data in most cases was insufficiently correct, 

since shifts and variance of the experimental moments due to 

limited range of received signals were not considered.1  

We have measured the high–order normalized moments 

and histograms of the plane wave intensity fluctuations for 
values of β

0
 parameter significantly exceeding those in earlier 

measurements in order to test available theoretical 

dependences of the high–order moments and several models of 

the probability density of the intensity fluctuations.  

The measurements were carried out using a well 

developed technique (see Ref. 1 and references therein).  

A V–shaped path with a reflect of the total length 

L = 3.7 km was arranged. A high–quality mirror disk 500 mm 

in diameter served as a reflector; a distance between the 

optical axes of direct and reflected beams in the reception 

place was more than 1 m that allowed the effect of intensity 

fluctuations enhancement due to reflection to be ignored. 

Small bulk of experimental data was also obtained at the 

path of L = 400 m. A quasi–plane wave was formed by a lens 

objective 500 mm in diameter with the effective beam output 

dimension of 8.5 cm by the level e–1. The laser radiation 

(λ = 0.63 μm) was received by three PMTs FEU–79 with the 

input diaphragms of ≈ 0.3 mm diameter. The central 

photomultiplier was placed at the visual center of the beam, 

two other PMTs were at a distance of 5 to 10 mm from it. 

Control of turbulent conditions in the atmosphere was 

performed by monitoring the intensity fluctuations at the path 
of length L

1
 = 200 m. Additional monitoring of homogeneity 

of the turbulence intensity along the path was done with an 

acoustic anemometer–thermometer5 placed near the middle of 

the path. Signals from PMTs were recorded with a digital 

tape–recorder in four channels with the digitization frequency 

of 5 kHz in each channel during 5 min.  

The use of signals recorded with the optical meter of 
C2

n
 and the acoustic anemometer–thermometer data 

allowed the inner scale of the turbulence to be 

determined from the temporal fluctuation spectrum.6 

High reliability of recording and reproducibility of digital 

information (the loss coefficient ≤ 10–7) and dynamic 

range (12 bits) allowed the histograms to be effectively 

estimated over the range of relative signal values 

0.01 ≤ I/<I> ≤ 20÷25, i.e., three orders of magnitude 

wide. The measurements were carried out in June and 

July under the conditions of fine sunny weather at 
midday time. The parameter l

0
 was in the range of  

3 – 4 mm during these measurements.  

Figure 1 shows the scintillation index 
β = (<I2>/<I>2–1)1/2 as a function of the parameter β

0
. 
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Curve 1 presents averaged experimental data from Ref. 7 

for a plane wave, curve 2 is the asymptotic obtained in 

Ref. 8: 

 
β2 = 1 + 0.85 (β

0
2)– 2/5, (1) 

 

curve 3 is calculated by the formula 

 
β2 = 1.74 – 0.092β

0
 + 0.6 (2π l

0
2 / λ L)1/2, (2) 

 

obtained in Ref. 9 for a plane wave in the region of 

fluctuation focus allowing for the inner scale of 
turbulence l

0
 = 4 mm. Curve 4 is the approximation of 

the experimental data estimated by eye.  

 

 
 

FIG. 1. The intensity fluctuation scintillation index β as a 
function of the parameter β

0
. 

 

As one can see from Fig. 1, in the region of weak 

fluctuations the experimental data agree quite well with 
the curve 1 and are close to it for β

0
 = 6÷7, and in the 

saturation regime all data lie above the asymptotic curve 

2 and the intensity fluctuations are saturated at the level 

β g 1.16÷1.17.  

Let us consider now the high–order normalized 
moments M

n
 = <In>/<I>n (n = 3, 4, 5) as functions of 

the parameter β
0
 (Fig. 2). In the saturation region the 

experimental values of the high–order moments lie above 

the asymptotic curves (curves 1) obtained in Ref. 8: 

 

M
n
 = n! [1 + 0.43 

n( n – 1)
2  β

0
– 4/5] , (3) 

 

and asymptotes obtained by Dashen in Ref. 2 (curves 2), 

 

M
n
 = n! exp [ ]0.43 

n( n – 1)
2  β

0
– 4/5  , (4) 

 

and also exceed the level corresponding to the exponential 

distribution (it is shown by dashed curve in the right 

portion of Fig. 2).  

 

FIG.
 
2. The high–order normalized moments M

n
 

(n = 3, 4, 5) as functions of the parameter β
0
. 

 

Comparative analysis of the high–order moments and 

probability density of instantaneous values of the intensity 

and the model distributions gives more complete 

information about the character of fluctuations of the 

process. The high–order normalized experimental moments 
M

n
 (n = 3, 4, 5) as functions of the second normalized 

moment M
2
 = <I2>/<I>2 are shown in Fig. 3. Solid curves 

correspond to the moments of a lognormal distribution  

 

P( I) = ( 2pσ I)– 1 exp[– (1/2σ2) (ln I – ξ)2] ; 
 

σ2= ln (1 + β2);  ξ = ln [< I> / (1 + β2)1/2] , (5) 

 

calculated taking into account the shift due to limitedness 

of the dynamic range under the experimental conditions 
(I

max
 = 4095; <I> = 150) by the formula obtained in 

Ref. 10. Dashed curves correspond to the moments of K–

distribution: 

 

< I> P(I) = (2/Γ( y)) y(y + 1)/2
 I( y – 1)/2

 K
y – 1 

[2(I y)1/2]; (6) 

y = 2 / (β2 – 1);  y > 0, 
 

where K
ν
(z) is the McDonald function. These moments are 

also calculated by the formula obtained in Ref. 11 taking 

into account the shift. As is clear from Fig. 3, the 

experimental moments deviate from the lognormal 
dependence with increasing M

2
 and correspond to the 

moments of K–distribution within the range 2 < M
2
 < 3; for 

M
2
 > 3 the truncated moments of the aforesaid distributions 

lie so close to each other that it is difficult to reveal a 

correspondence of moments to any law, therefore we analyze 

the histograms of instantaneous values of the intensity for 

more detailed verification of the distribution law.  

Figures 4–7 present the characteristic histograms for 
various values of the scintillation index β and parameter β

0
. The 

model probability densities (5) and (6) are outlined in these 

figures for a comparison. Vertical bars on the plots show the 

rms deviation of the histogram estimation. As one can see from 
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Fig. 4, for weak fluctuations (β
0
 < 1, β < 1) the experimental 

data are well approximated by the lognormal distribution that 

corresponds to the accepted model of the probability density 

for the weak fluctuations.7, 12 As to the saturation region 

(Figs. 5–7), here the experimental data are close to K–

distribution, but together with the data which are very well 

approximated by K–distribution over the whole range of the 

intensity values (Fig. 5), there are the histograms somewhat 

different from it in the deep fading region (Fig. 6). Thus, 

Fig. 7 presents the histograms which have very close values of 
β

0
 and β though they differ by about an order of magnitude in 

the fading region. Such a change in the histograms can hardly 

be explained within the framework of the model of stationary 

random process, and it is probably connected with the fact 

that the assumption on stationarity is valid only 

approximately. Nevertheless, K–distribution in the saturation 

regime approximates this histograms better than the lognormal 

and exponential ones that confirms the conclusions drawn in 
Ref. 13. 

 
 

 
FIG. 3. The high–order normalized moments of the 
intensity M

n
(n = 3, 4, 5) as functions of the second 

normalized moment M
2
. 

 
FIG. 4. Comparison of the histogram P(I) of the normalized 

values of the intensity I/< I > with the lognormal 

distribution. 

 
FIG. 5. Comparison of the histogram of the normalized 

values of the intensity with K–distribution. 

 

FIG. 6. Comparison of the histogram of normalized values 
of the intensity with K–distribution.  

 

Fig. 7. Comparison of the histogram of normalized values 

of the intensity with K–distribution. 
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Let us now consider the physical scenario resulting in 

K–distribution. As was noted in Refs. 14 and 15, when the 

optical waves propagate through randomly inhomogeneous 

medium the refractive index fluctuations cause the appearance 

of a caustic peculiar points. Along every beam at a finite 

distance from the preceding caustic another one caustic is 

formed with the unit probability. The appearance of caustics 

results in a multi–beam regime of wave propagation. In this 

case not only one but several beams with different initial 

coordinates reach the same point. If a number of such 

independent channels of propagation is sufficiently large (~>

 12) then scattered field satisfies the Gaussian statistics and, 

hence, the intensity probability density is exponential. In the 

case when the illuminated region is comparable or smaller 

than the spatial correlation of field fluctuations and the mean 

number of independent channels of propagation is small, the 

central limit theorem is inapplicable and the scattered field 

statistics differs from Gaussian form. In our case this explains 

why the fluctuations are saturated at the level which is greater 

than unity, and the probability density approaches to K–

distribution curve.  

Evolution of the experimental histograms from K–

distribution to exponential one with increasing number of 

scatterers in the illuminated region is well seen from data 

presented in Ref. 16 where the case of the laser radiation 

scattering by a rough surface is considered. When the number 

of scatterers reaches ∼ 50 the probability density is close to an 

exponential function, and when the number of scatterers is 

small (∼ 7) the obtained histograms become closer to K–

distribution.  

It is difficult to make based on the publications 

available15,16 more correct estimation of the mean number of 

the propagation channels and their variance in the region of 

saturated fluctuations.  

The observed spread in values of the histograms in the 

region of deep fading is most likely connected with the 

variation of the number of scattering channels, whose rms 

number is comparable with the mean value.  

The above discussed circumstances also explain the fact 

that statistics observed in the experiments on a spherical wave 

reflection from an array of corner–cube reflectors differ from 

Gaussian law.17 In spite of the fact that a number of corner 

reflectors in the experiment is rather large (twelve), at a 

distance of the order of the array size the field fluctuation 

correlation takes place and therefore the mean number of 

independent propagation channels contributing to the 

receiving field is smaller than the number of reflectors. Having 

spaced the array elements at a distance exceeding the 

correlation radius of the wave field so that the beams arrived 

from individual corners can be considered independent, we 

may try to obtain the exponential distribution in the 

experiment.  

 

Thus, it is shown in the paper that our experimental data 

on the intensity fluctuation moments in the saturation regime 
(β

0
 g 6–19) lie above all the calculated asymptotic curves, 

and saturation occurs at the stable level of β=1.16–1.17 which 

exceeds the level corresponding to the exponential 

distribution. It is also shown that starting from the values of 

the parameter β
0
 ∼> 6÷18 K–distribution approximates the 

experimental data quite well. In this case a number of the 

channels for multi–beam propagation is 6 or 7.  
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