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The paper describes an approach using the apparatus of the Markov filtration of 
double stochastic Poisson processes. An optimal estimate of the double stochastic 
Poisson process has been obtained based on the Markov property and the Calman–
Bucy filter equations. The Robbins–Monroe procedure is used, which makes it possible 
to construct the sequence convergent to an unknown ideal value of the parameter. 

 

INTRODUCTION 
 
An extreme spatiotemporal variability of the Earth's 

atmosphere makes the fields of the atmospheric optical 
parameters to be random; altitude dependences are spatial 
realizations of these fields at fixed moments of time, and 
behavior of the characteristics of a selected volume on a 
time interval makes their temporal realizations. The lidar 
measurements of any atmospheric parameter are 
accompanied by the spatiotemporal smoothing of these 
realizations that under certain conditions enables one to find 
their statistical structure.1 To optimize the processing of 
sample data for greater efficiency of lidar methods of 
determination of atmospheric parameters, use of methods of 
the statistical theory is possible, in particular, the optimal 
Markov filtration of lidar signals as shown in Refs. 1–3 for 
the basic modes of their recording.  

Optimization in the photon–counting mode has been 
performed on the basis of equations obtained using the 
methods of the Markov filtration of continuous processes. A 
more rigorous approach is connected with the use of the 
Markov filtration of double stochastic Poisson processes.4 
An idea of application of this apparatus may be fruitful if 
the two conditions are met. 

First, the estimated parameter must be stochastic in 
the sense that its dependence on time (temporal filtration) 
or distance (spatial filtration) must be some random process, 
which has specific properties, namely, Gaussian and 
Markovian ones. In particular, the temporal dependences of 
backscattering coefficient fluctuations smoothed in a spatial 
gate are such processes what is supported by satisfactory 
exponential approximation of their autocorrelation 
function.5  

Second, optimal filtration must be more effective than 
commonly used nonoptimal processing of lidar signals to the 
extent sufficient to justify the complication of the 
processing algorithm and the requirements imposed upon it. 
So it is necessary to estimate the efficiency of optimal 
filtration for determining its field of application as well as 
for checking the efficiency of the algorithm under 
conditions of closed numerical experiments, for analyzing 
the sensitivity to inaccurate setting of a priori data, and so 
on. The calculation of the efficiency is also needed for 
another purpose, for example, for prediction of sounding 
efficiency under given conditions when developing the lidar 
and selecting its main parameters as well as for determining 
the efficiency of operation of particular lidars under various 
conditions of sounding. 

This paper describes an approach related to the use of 
the Markov filtration of double stochastic Poisson processes. 

 

STATEMENT OF THE PROBLEM AND RELEVANT 

FORMULAS 
 
Let us assume that the temporal, smoothed in the 

scattering volume, realizations of the backscattering 
coefficient β(t; z) are Markovian ones, which can be 

represented as β = β
–

 + Δβ, where β
–

 and Δ β are the average 
and β fluctuation values, respectively, t is the time, z is the 
height. If we consider that the normalized fluctuations 
η(t; z) = Δβ/σ

β
, where σ

β
2(z) is the variance of β(t; z), are 

the Gaussian Markovian process with the exponential 
autocorrelation function and radius tc of temporal 

correlation, we have 
 

β(t; z)
 
= β

–
 + σ

β
(z) η(t; z) . (1) 

 
In the photon counting mode box–car integration with 

the gate duration Δtg, the intensity ν
Σ
( t; η, z) of the total 

Poisson flux of photoelectron numbers n(t, Δt) accumulated 

within intervals Δt Ü tc at the moment t equals 

 
ν
Σ
(t; η, z) = χ2[Ps(t; η, z) + χ1 Pb] / hν + id / q, (2) 

 
where χ1 and χ2 are the loss factors of the receiving optics 

and quantum efficiency of the photodetector, hν is the 
energy of a radiation quantum, q is the electron charge, id is 

the dark current, Pb is the background power, collected by 

the receiving aperture, 
 

Ps(t; η, z) = χ1 E0 Sa(z – zlid)
– 2

 

c Δ tc
2  β(t; η, z) Y 2(zlid, z) fn (3) 

 

is the realization of a signal component of the backscattered 
power. The value E0 in Eq. (3) is the radiation energy per 

pulse, Sa is the receiving aperture, Y(zlid, z) is the product 

of (smoothed) functions of aerosol and Rayleigh 
transmissions, zlid is the height of the lidar location, f

n
 is 

the sounding pulse repetition frequency. 
For a given realization Ps(t; η, z) we have at the 

photodetector output the unobservable conditionally Poisson 
signal photoelectron flux ns(t; η, z) with the intensity 

νs(t; η, z) proportional to Ps, and the total flux of signal 

and dark noise photoelectrons n(t) with the intensity 
ν
Σ
(t; η, z) of the type (2). Let us assume that the 
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contribution into the fluctuations ΔPs on the observation 

interval [t0, tmax] gives random deviations Δβ due to the 

integral character of fluctuations Y(zlid, z). The fluctuations 

ΔY with the radius tc Y of time correlation  

(tc Y > tmax – t0 á tcβ, where tcβ is the radius of time 

correlation of β, determined by horizontal scale of optical 
inhomogeneities and their velocity) together with the other 
large–scale fluctuations of atmospheric parameters 

determines the statistical characteristics of the value of ν–
Σ
 

averaged over the ensemble of fluctuations Δβ which we 
consider to be the unknown random value. As a result, we 
have a double stochastic Poisson process with the average 
intensity a priori unknown. 

An algorithm for processing n(t) should be synthesized 
for optimal reconstruction of η(t), νs(t; η, z), and 

ν
Σ
(t; η, z) and simultaneous assessment of the unknown 

value ν–
Σ
. 

 
EQUATION OF FILTRATION AND ADAPTATION 

 
Let us find an algorithm for processing n(t), providing 

optimal (in terms of the minimum rms error) estimate of 
η(t) on the observation interval [t0, tmax]. Substituting 

Eq. (1) into Eq. (3) and according to Eq. (2) we can write 
ν
Σ
 in the form: 

ν
Σ
( t; η, z)

 

= ν–
Σ
( z) + σs( z) η( t) , (4) 

 

where ν–
Σ
(z)

 

= ν–s(z) + νn , ν
–

s(z) = χ2 
–
Ps/hν, 

νn = χ1 χ2 Pb/hν + 

id
q  are the values of intensities of the 

total, signal, and dark noise fluxes of photoelectrons 
averaged over the ensembles of shot fluctuations of the 

photodetector and β, σs= ν–s mβ
, and m

β
 = σ

β
/β
–

. 

Using the Markov property of η, one can write the 
Calman–Bucy filtration equation for its optimal estimate η* 
when recording the double stochastic Poisson process: 
 

d η* = – 
1
tc
 η* d t + K σs/ν–

Σ
[d n (t) – ν–

Σ
 d t – σs η* d t] , (5) 

d K
d t  = – 

2
tc

 K + 
2
tc

 – 
σ s

2

–ν
Σ

 K2 ,   (6) 

where K
 
= <(η – η*)2> is the a posteriori variance of η*, 

d n(t) = n(t) – n(t + d t) is the increment of the process 
n(t) on the interval [t, t + dt]. The initial conditions are 
given at the moment t0: η*(t0) = 0, K(t0) = 1. The set of 

equations is solved using the recursion numerical methods 
(Euler–Cauchy and Runge–Kutta of the fourth order). 

Under conditions of a priori uncertainty relative to 
any parameters the application of adaptive processing 
algorithms is fruitful since it allows us to estimate the 
unknown values simultaneously. In particular, to estimate 

average intensity ν–
Σ
, unknown due to limited amount of 

a priori information on statistical characteristics of large–
scale fluctuations determining the distribution, it is 
appropriate to use the methods of nonparametric statistics. 
If we consider the optimal estimate η to be given, obtained 
from the set of equations (5) and (6), we arrive at the 
problem on simultaneous estimate of the unknown average 
against the background of additive Gaussian shot 

fluctuations of the photodetector. To solve this problem, we 
use the Robbins–Monroe procedure,6 allowing the 
construction of a sequence converging to the unknown ideal 
value of the parameter according to the recursion formula  

 

–n*
j + 1 = –n*j  + 

1
j + 1 [n(tj + 1) – σs η* – –n*j] , (7) 

 

where t
j

 
= t0 + ( j – 1) Δ t, –n*1 = n0 , j = 1 to M, 

M = (tmax – tj), n0 is an arbitrary initial value. The 

sequence of the estimates ν– j* of the unknown average 

intensity n–
Σ
 is determined as ν–*j  = n–*j /Δt. 

An adaptive algorithm amounts to recursion 

determination of the estimates η* and –n*j+1 by solving the 

set of interrelated equations (5)–(7).  
 

EFFICIENCY OF THE ALGORITHM 
 
The algorithm was analyzed under conditions of a 

closed numerical experiment including the imitation of η(t) 
giving the form of fluctuations Δβ(t; z), formation of useful 
ns(t; η, z) = νs(t; η, z)Δt component and the total 

n(t; η, z) = ν(t; η, z)Δt signal photoelectron flux as well as 
the analysis of spatial and temporal behaviors of indices of 
efficiency of filtration for different lidar stations. 

Imitation of temporal fluctuations of β(t; z) was 
performed according to Eq. (1) by simulating simple 
Markovian process η(t) by the formula7 

 

η(ti) = exp( – Δ t/tc) η(ti – 1) + 1 – exp(– 2 Δ t/tc) ξ(ti) , 

 
where ξ(ti) are normal random values with zero mean and 

unit variance. 
For simulation of time series of the number of 

photoelectron counts ns(t; η, z) and n(t; η, z) the property of 

superposition of independent Poisson fluxes8 is used, which 
makes it possible to imitate the Poisson fluxes with large 
input average values using standard procedures and thus to 
carry out closed numerical experiments for a wide range of 

sounding altitudes. The time functions n–s(t) = n–s + σs η(t) 

serve as the input data to the Poisson operator Π describing 
the ideal photodetector when obtaining ns(t; η, z), therefore 

ns = Π{n–s} is the double stochastic Poisson process. For 

imitation of the noise component nn of the input photoelectron 

mixture n–n is used, i.e., nn = Π{n–n}. 

 

 
 
FIG. 1. Reconstruction of unknown time–averaged 

photoelectron number for n–*(0) = n–⋅1.0 (1), n–⋅0.7 (2), 

and n–⋅0.5 (3). Curve 4 is for n–, and curve 5 corresponds 
to initial realization. 
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FIG. 2. Comparison of true η(t) (1) and reconstructed 

values of realization η(t) and η*(t) for n0 = n–⋅1.0 (2) and 

n–⋅0.5 (3). 
 

Figures 1 and 2 show the results of the numerical 
experiment. Figure 1 presents a comparison of the true η(t) 
and those reconstructed using Eqs. (5)–(7), η*(t), of the 
relative fluctuations of the backscattering coefficient at 
different values of the a priori uncertainty n0. In particular, at 

the a priori known n–, corresponding to nonadaptive version of 
filtration, the estimate of η*(t) well follows the fluctuations 
of η. 

Under conditions of adaptation at an essential initial 

deviation n– (50%) in the transition mode we observe a marked 
discrepancy between η* and η. Figure 2 shows the 
reconstruction of the unknown average by Eq. (7) for different 
values of a priori uncertainty. In particular, from this figure 
we notice that at the 50% deviation the transition mode slows 
down that affects the results of reconstruction of η. 

 
 

CONCLUSION 
 
As a result of our study, the adaptive algorithms of the 

lidar signal processing in the photon counting recording 
mode have been found. The algorithm efficiency is 
demonstrated under conditions of the closed numerical 
experiment. 
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