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A modification of local estimation of lidar signals is proposed which increases 
the efficiency of Monte Carlo method for the small–angle reception at small distances 
from a scattering volume. A specific feature of the modification is simultaneous 
simulation of the forward and backward trajectories, the final estimate being 
weighted–average over all the trajectories constructed. 

 

Many problems of laser sensing of turbid atmosphere 
are solved by employing Monte Carlo method.1 Due to 
specific boundary conditions imposed (point and pencil–
beam sources and receivers), such algorithms are based on 
local estimations. 

In the case when the lidar and the medium sensed are 
spatially separated and the parameters τ0 = R0σ and 

τd = τ0ϕ (with R0 is the distance between the lidar and the 

scattering volume, σ is the characteristic value of the layer 
extinction coefficient, 2ϕ is the receiving angle) satisfy the 

conditions τ0 
>
∼ 1 and τd 

>
∼ 0.1, the ordinary (single) local 

estimation is adequate. However, for smaller τ0 and τd the 

variance of the local estimate sharply increases, thus making 
it inefficient. The failure is most evident for τ0 = 0 and 

vanishing ϕ, when the double local estimation is used. This 
is also deficient, in that it slowly converges and involves 
two (rather than one, as in the local estimation) values of a 
scattering phase function, thus adding to the spread of the 
obtained estimates, due to the strong anisotropy of actual 
phase functions for turbid atmosphere. The existing 
difficulties have stimulated the development of several 
modifications to the local estimations1 some of which we 
have tried though they gave no satisfactory (at least, as 
satisfactory as for large τ0 and τd) solution to the problem. 

This paper is concerned with the construction of an 
efficient algorithm for estimation of lidar signals in the case 
of small τ0 and τd by simulating simultaneously forward and 

backward photon trajectories. In some aspects, this work 
develops the approach proposed in Ref. 2. 

Consider standard scheme of laser sensing of turbid 
atmosphere which is characterized by the scattering 
coefficient σ(r), extinction coefficient σe(r), and the 

scattering phase function f(θ) of a unit volume. Let the 
source of radiation be at a point as, and the receiver at ar. 

The source directional pattern is described by the function 
gs(θ), while the transmission function of the receiver by 

gr(θ), both satisfying the normalization conditions 

 

⌡⌠
 
 gs(θ) dΩ = 1,   ⌡⌠

 
 gr(θ) dΩ = Ωr . 

 
Suppose that at the initial moment the source emits a 

pulse of a unit power of the δ–function time shape. Then 
the received power Pi averaged over a time interval (ti, ti+1) 

can be represented as a series over scattering orders, namely, 
 

Pi = ∑
m

 Pim ; (1) 

 

Pim = Δ t–1
i  Ωr Sr ⌡⌠

 
 Π
k=0

m

Q
k
(r

k
, r

k+1) dr1 ... drm, (2) 

 
where 
 

r0 = as,  rm+1 = ar, Qk(rk, rk+1) = fk(θk) σ(rk+1) e
–τ

k, k+1 r–2
k, k+1 

 
at k = 0, 1, ... , m – 1;  
 

Qm(rm, rm+1) = fm(θm) fm+1(θm+1) e
–τm, m+1 r–2

m, m+1; 

 

f0(θ0) = gs(θ0); fm+1(θm+1) = gr(θm+1) W
–1
r , 

 

fk(θk) = f(θk) at k = 0, 1, ... , m. 

 
In Eq. (2) the sequence of points (r1, ..., rm) 

represents the photon trajectory; θ
k
 is the scattering angle at 

r
k
; r

k, k+1 is the distance between the points r
k
 and r

k+1; 

τ
k, k+1 is the optical depth of the path between r

k
 and r

k+1; 

Sr is the receiver aperture area; Δti = ti+1 – ti; 

Δi = Δi(ti, ti+1, r1, ..., rm) = θ(t – ti) – θ(t – ti+1), where 

θ(t) is the unit step function; t = 
1
c∑
k=0

m

 r
k, k+1; c is the speed 

of light. The functions θ
k
(r

k
, r

k+1) determine the probability 

density of transition from r
k
 to r

k+1. 

Let us rearrange Eq. (2) to the form 
 

Pim = ⌡⌠
 
 R0, k(r1, ... , rk) zk(rk–1, ... , rk+2) × 

 
× Rm+1, 

k+1(rk+1, ... , rm+1) D'
i dr1 ... drm, (3) 

 
where  
k = 0, 1, ... , m;  D'

i = Δ t–1
i  Ωr Sr Δi(ti, ti+1, r1, ... , rm); 

 

R0, k = Π
j=0

k–1

 Qj(rj, rj+1) at k = 1, ..., m , R0,0 = 1; 
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Rm+1, k+1 = Π
j=k+1

m

 Qj

∧

(rj+1, rj);  

 

Qj

∧

(rj+1, rj) = fj+1(Qj+1) σ(rj) e
–τj, j+1 r–2

j, j+1  

 

at k = 0, 1, ... , m–1; Rm, m+1 = 1; 

 

z
k
(r

k–1, ... , rk+2) = f
k
(Q

k
) f

k+1(Qk+1) e
–τ

k, k+1 r–2
k, k+1. 

 
The quantity R0, k in Eq. (3) is the probability density 

of photon motion from r0 to rk, while Rm+1, k+1 denotes the 

probability density of photon motion along the backward 
trajectory from rm+1 to rk+1. As follows from Eq. (3), Pim 

can be evaluated by simulating the corresponding segments 
of forward and backward trajectories and determining the 
mathematical expectation of z

k
 Δi′, that is,  

 
Pim = M[z

k
 Δi′] ,  

 
where M denotes the mathematical expectation. Here, k 
may take any value between 0 and m. We note that k = m 
corresponds to the ordinary local estimation, while 
k = m – 1 corresponds to the double local estimation. 

Now, averaging Eq. (3) over all k between 0 and m 
and changing the order of summation and integration we 
have 
 

Pim = 
1

m + 1 ⌡⌠
 
 Δi′ ∑

k=0

m

 R0, k zk Rm+1, k+1 dr1 ... drm. (4) 

 
Since the product R0, k zk Rm+1, k+1 depends only upon 

the trajectory (r1, ..., rm) rather than on the number k, the 

individual summands can be taken with arbitrary weights 

α
k
(r1, ..., rm), which satisfy the condition ∑

k=0

m
 α

k
 = m + 1. 

Substituting α
k
 into Eq. (4) and restoring the orders of 

summation and integration yield 

Pim = 
1

m + 1 ∑
k=0

m

 ⌡⌠
 
 αk

 R0, k zk Rm+1, k+1 Δi′ dr1 ... drm. (5) 

 
Expression (5) determines the estimate of Pim of the form 

 

Pim = 
1

m + 1 ∑
k=0

m

 M [α
k
 z

k
 Δi′]. (6) 

 
Let us choose the weights αk as follows 

 
a
k
 = 0 for  z

k
 > zih,

a
k
 = (m +1)/Msum for  z

k
 ≤ zih,

 (7) 

 
where Msum is the total number of terms in (6) for which 

z
k
 ≤ zih, and zih is a number depending on the number i of 

segments in time histogram (how to choose zih will be 

discussed below). Expressions (6) and (7) are a sort of 
modification of a local estimation, whose variance is 
finite because α

k zk are bounded from above. 

 

The estimate (6) and (7) differs from ordinary local 
estimates in that the contribution of one and the same 
trajectory Pim is estimated in (m + 1) different ways of the 

trajectory simulation, and contribution from each variant to 
Pim is the product of the trajectory (r1, ..., rm) occurrence in 

this variant, proportional to R0, k Rm+1, k+1 and the value of z
k
.  

Contributions of all the variants are equal in magnitude, 
but either have small occurrence and large z

k
 or vice versa. 

Clearly, the spread of estimates is mainly due to former 
variants. Introducing the weights (7), the former variants are 
excluded, while their contributions to Pim are accounted for 

by increasing the contributions of the latter variants by a 
factor of (m + 1)M 

–1
s . 

The efficiency of estimation proposed depends on the 
choice of zih. Obviously, for any i the value of zih must 

correlate with the mean power Pi = ∑
m

 P
im
 in the ith interval 

of the time histogram. It is assumed here that zih ∼ Pi, where 

the proportionality constant is found as follows. 
For a given m, the maximum weight α

k
 occurs for 

Msum = 1 and equals to m + 1 (the case of Msum = 0 will 

be considered below). In this case the contribution from 
individual simulated variants to Pi amounts to  

Δt i
-1 Ωr Sr zk N

–1, where N is the number of trajectories 

simulated. We require that this particular contribution 
does not exceed βPi, where β < 1 (in practice, β value is 

chosen from the interval 0.01–0.1). Thus we find 
 

zih = β Pi N Δti (Ωr Sr)
–1. (8) 

 
From Eq. (8), assignment of zih requires Pi to be 

preliminarily specified, e.g., through the preliminary 
calculation with the proposed scheme and using zih values 

larger than those directly following from Eq. (8). 
Of special note is the case of Msum = 0, when for all 

trajectory segments the inequality z
k
 > zih holds. In this 

case, we assume that α
k
 = 0 for all k and show below that 

this introduces negligible biases in the estimates. 
To evaluate the contribution of trajectories with 

Msum = 0, we shall consider the following model situation. 

Let a homogeneous infinite medium with the extinction 
coefficient σ contains the source emitting an instantaneous 
pulse of radiation. We need to determine the probability Q

g
 

that after the dimensionless time U = σct the photon 
trajectory containing no segments longer than a given value l

g
, 

with the path traversed after the last collision also included. 
Obviously, Q

g
 can be considered as an average estimate of the 

contribution of trajectories with Msum = 0 over all receiver 

positions and orientations in space for a time delay U. 
A simple estimate of the upper limit on Q

g
 is at once 

obtained from (1 – e
–lg)

Nl, where Nl is an integer part of 

the ratio U/l
g
. From this, Q

g
 vanishes with increasing U or 

decreasing l
g
. However, this value is a crude overestimate. 

For this reason, Q
g
 values for most practically useful U 

values were found by numerical Monte Carlo computations 
(see Table I). 

Shown in the Table I is the probability that photon 
trajectory after the time U contains no segments longer than l

g . 
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TABLE I. 
 

  U 
 

l
g
 2 5 10 20 

0.5 3⋅10–3
 7⋅10–8

 – – 

1.0 0.27 1.3⋅10–2
 1.0⋅10–4

 4⋅10–9
 

2.0 – – 0.17 2.3⋅10–2.
 

 
From the table we see that Q

g
 is negligible for l

g
 ≤ 0.5 

at U ≤ 10 and for l
g
 ≤ 1.0 at U ≥ 10. Since z

k
 ∼ e

–τ(lg)
 l

g
–2, 

the indicated extremum values of l
g
 provide an upper limit 

for z
k
 and, correspondingly, a lower limit for β, 

respectively. Thus, the selection of β has to proceed as a 
compromise between the estimate spread and bias. Such a 
choice is practically feasible that has been justified by 
numerical calculations.  

Examples of calculations of lidar signal power P are 
given in Fig. 1 in relative units as functions of 
dimensionless time U. Triangles indicate data obtained by 
the method of modified estimation (6), (7). For a 
comparison, shown by broken lines are calculations using 
ordinary local estimates. Note that for the computation 
being illustrated the lg value varied from 0.05 to 0.4 with 

N = 5⋅104 and β = 0.01. 

 
 

FIG. 1. Signal power vs. dimensionless time; 
computations using modified estimation (triangles) and 
local estimations (broken lines): with the lidar and 
medium spatially separated (a) and with the lidar at the 
medium boundary (b). 

 
The calculational data in Fig. 1a are presented to 

make a comparison of the developed algorithm with 
already tested method of local estimation. For variance 
reduction, at large U the latter was used together with 
the method of trajectory splitting.3 The geometry of 
experiment suggested the lidar and cloud to be spatially 
separated, with parameters τ0 = 100 and τd = 10. The 

receiver field of view was formed by a ring diaphragm, so 
 

that τd referred to the ring outer radius. From Fig. 1a it 

is clear that the two methods agree within the spread of 
the results. 

Let us consider the case in Fig. 1b, when both the 
receiver and the source are located at the boundary of a 
homogeneous semi–infinite medium, in more detail. The 
medium extinction coefficient is σ = 20 km–1, the 
scattering phase function is that for the Deirmendjian C1 
cloud at the wavelength λ = 0.7 μm, source–receiver 
separation is 4.2 m. The source has the angular divergence 
2ϕs = 0.5°, and its optical axis is normal to the medium 

boundary. The receiver axis lies in the plane formed by 
the base segment and the source axis, and is oriented 
along the direction of 3° away from the source axis. The 
receiver field of view is 2ϕr = 5°. 

The calculations by the method of modified 
estimation are compared with the double local estimation 
supplemented by the method of trajectory multiplication. 
The computation time is the same for both methods. The 
break in the upper portion of the broken line in Fig. 1b 
corresponds to an order of magnitude spike: a common 
feature for standard double local estimation techniques. 

From Fig. 1b it is clear that at small times the two 
methods agree very well. At U > 8 the double local 
estimation gives systematically low results, with the 
spread considerably broader than for the modified 
estimation. To evaluate quantitatively the average spread 
in results, for U > 8 these results were smoothed by 
least–squares method with two–degree polynomial, the 
rms deviation δ about the smoothed curve was 
determined. The δ value for the modified estimation was 
found to be 0.05, while for the double local estimation it 
was 0.14, with the bias Δ g δ. As the time of computing 
with the method of double local estimation was increased 
by a factor of 5, δ and Δ were decreased to 0.1. Further 
calculations to get δ value compared to that in the 
method of modified estimation were not attempted for the 
reasons of extraordinary long computer time required. 
However, the slow convergence of the double local 
estimation1 suggests that a twofold reduction of δ would 
require at least four times longer computer times. Thus, 
for U ∼ 10–20, the proposed modification of local 
estimation is at least one order of magnitude more 
efficient (in the sense of computation effort required for 
the same δ) than the double local estimation. We also 
note that the lidar returns from clouds and fogs can be 
computed for U > 20 using asymptotic relations of 
transfer theory.3 Thus, the proposed modification of local 
estimation allows the Monte Carlo method computation 
at small τ0 and τd to be done until the coincidence with 

the results from asymptotic formulas of transfer theory. 
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