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The structure of narrow–band noise at heterodyne signal detection is analyzed, 
and its information content is estimated. It is shown that the more the amplitude–
frequency response of a narrow–band system differs from the Π–shaped one, the larger 
is the system information content. 

 
Lidar heterodyne detection systems attract now much 

attention. Despite of certain complexities, heterodyne 
systems are undoubtedly preferable against the direct 
photodetection, in particular, on highly attenuating paths 
with an intense background noise. 

The most important problem of developing heterodyne 
systems concerns the improvement of their noise protection. 
One of possible ways to do this is the use of spectral 
differences of noise and signal. 

Because the structure of noise in heterodyne detection 
is not clearly understood, in this paper we consider the 
structure of narrow band noise in heterodyne signal 
detection in order to provide an estimate of its information 
content.  

As known, heterodyne detection systems are essentially 
narrow–band, and usually satisfy the condition2 

 

Δ F Ü F
inter

, (1) 

 
where Δ F is the width of output radiation spectrum, F

inter
 

is the intermediate frequency of a transceiving system. 
Systems satisfying condition (1) are referred to as 

narrow–band systems. Under the influence of a wide–band 
noise, the signal at the output of such systems is a narrow–
band process with the correlation function2 
 
R(τ) = ρ(τ) cos [ω

0
 τ + γ(t)],   ω

0
 = 2 π f

0
, (2) 

 
while in the case of symmetric amplitude–frequency 
characteristic (AFC) 
 
R(τ) = ρ(τ) cos ω

0
 τ, (3) 

 
where ρ(τ) is a slowly varying function in contrast to 
cos ω

0
 τ, which is determined by the system AFC and 

depends upon its passband. 
According to Ref. 2, a narrow–band process ξ(t) can 

be represented as a harmonic wave randomly modulated by 
amplitude and phase 
 
ξ(τ) = A(t) cos [ω

0
 t + ϕ(t)], (4) 

 
where A(t) and ϕ(t) are slowly varying functions in contrast 
to cos ω

0
 τ, representing the envelope and random phase of a 

narrow–band process. 
If at the narrow–band system input there is a normal 

wide–band noise, the system output ξ(t) and the envelope 
A(t) are also normal with zero mean values,2 since the 
output signal is a linear transformation of the normal input 
process. 

Let the envelop A(t) be presented in terms of a Fourier 
series as  

 

A(t) = ∑
k=1

∞
 ak cos (k Ω t + ϕk), (5) 

 
since A(t) is the normal random process with zero mean, the 
zeroth term in series (5) is absent.  

Taking this into account, the narrow–band process can 
be presented as 
 

ξ(t) = (∑ ak cos k Ω t) cos [ω
0
 t – ϕ(t)] = 

 

= 0.5 ∑ ak cos [ω0
 t – k Ω t + ϕ(t)] + 

 

+ 0.5 ∑ ak cos [ω0
 t + k Ω t + ϕp(t)]. (6) 

 
As is obvious from Eq. (6), the narrow–band random 

process is essentially amplitude–modulated (AM) wave with 
a suppressed carrier wave. This conclusion is in a good 
agreement with familiar postulates of information theory 
and the theory of random processes. 

The energy spectrum of narrow–band random process 
at the output of a linear narrow–band system with the 
transfer function K(jω) is given as 
 
S

out
(ω) = S

in
(ω) ⏐K(j ω)⏐2, (7) 

 
where S

out
(ω) and S

in
(ω) are the spectral power density of 

noise at the linear narrow–band system output and input, 
respectively. 

In the presence of a wide–band normal noise with a 
constant spectral density S

out
(ω) = N

noise
, the equation (7) 

takes the form: 
 

S
out

(ω) = N
noise

 ⏐K(j ω)⏐2. (8) 

 
The correlation coefficient of such a process is given 

as
 
 

R(τ) = 

K(τ)
σ2  = 

1

2π σ2 ⌡⌠
–∞

∞

 S(ω) ejωτ dτ = ρ(τ) cos (ω
0
 τ + ϕ(τ)), (9) 

 

where σ2 is the variance of the output process.  
The correlation function of the envelope, according to 

Ref. 2, is  
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ρa = 
K(t)

σ2  = 

 

= 
4

4 – π ⎣
⎡

⎦
⎤( )12  ρ2(τ) +( )

1
2⋅4  ρ4(τ) +( )1⋅3

2⋅3⋅4  ρ6(τ) ... = 

 
= 0.921 ρ2(τ) + 0.058 ρ4(τ) + 0.0145 ρ6(τ) + ... (10) 
 
Since ρ(τ) < 1, equation (10) reduces to 
 
ρa(τ) = ρ2(τ). 
 

Therefore, the correlation coefficient of the envelope 
is approximately the square of slowly varying factor ρ(τ) 

To reveal the envelope changes, let us consider an 
important practical case of transmitting a noise through 
an ideal filter with 2Δω bandwidth centered at ω

0
; the 

filter frequency response is assumed uniform within 2Δω , 
with the transmission coefficient K

0
. In this case, the 

energy spectrum at the filter output is uniform in the 
band from ω

0
 – Δω to ω

0
 + Δω, with the value 

S
out

(ω) = S
out

(ω
0
), and the correlation function has the 

form1: 
 

K
out

(τ) = 
S

out
(ω

0
)

2π  ⌡⌠
ω
0
–Δω

ω
0
+Δω

 
 cos ωτ dω = 

S
out

(ω
0
)

2πτ  [sin(ω
0
 + Δω) τ – 

 

– sin(ω
0
 – Δω) τ] = 

S
out

(ω
0
)

πτ  sin Δω τ cos ω
0
 τ. (11) 

 
From formulas (10) and (11) it follows that the 

correlation coefficient of the envelope is as follows: 
 

R
e.s.c.

 = 
S

out
(ω)

π2 τ2
 sin2 Δω τ . (12) 

 
Therefore spectrum of the signal envelope with a 

suppressed carrier is 
 

S
e.s.c.

(ω) = 2 ⌡⌠
–∞

∞

 K
e.s.c.

(τ) e–jωτ dτ , (13) 

 
or, with the spectrum defined for the positive frequency 
only, 
 

S
e.s.c.

(ω) = 4 ⌡⌠
–∞

∞

 K
e.s.c.

(τ) cos ωτ dτ. (14) 

 
Calculations by formula (14) have shown that the 

signal envelope with suppressed carrier has a spectrum 
shaped as a triangle (see Fig. 1). This finding well agrees 
with the experimental results,3 obtained earlier. 

As known, a signal at the output of a linear circuit 
has maximum entropy, at a given energy spectrum, when 
a wide–band normal noise is applied to the circuit input. 
This condition is satisfied only in the case when each 
spectral component is information–bearing. That is, 
signals with maximum entropy must be carrier–free. 

 
FIG. 1. The spectrum of the narrow–band noise envelope 
at the output of narrow–band system with Π–shaped 
AFC. 

 

Let us now consider the information content of a 
narrow–band signal with a suppressed carrier and compare 
it to that of amplitude–modulated signal with the envelope 
of a narrow–band signal with a suppressed carrier. The 
signals have identical envelopes, hence, they carry the same 
amount of information. Therefore, having the width of 
spectrum of both signals known, their ratio gives the change 
in the signal information content. 

In so doing, we first determine the correlation function 
of amplitude–modulated wave with the carrier for the case 
when its envelope is identical with the envelope of narrow–
band signal with suppressed carrier. 

As known,2 a slowly varying coefficient of correlation 
function of an amplitude–modulated wave gives the 
correlation function of envelope. 

Therefore, the correlation function of an amplitude–
modulated signal with the envelope identical with the 
envelope of a narrow–band process can be presented as 

 
R(τ) = K

am
(τ)/σ2 = (0.921 ρ2(τ) + 0.058 ρ4(τ) + 

 

+ 0.0145 ρ6(τ) + ... ) cos (ω
0
 τ + ϕ(τ)) (15) 

 

or, approximately, as 
 

R
am

(τ) = ρ2(τ) cos (ω
0
 τ + ϕ(τ)). (16) 

 
The spectrum of a signal having the structure of 

amplitude–modulated wave is given by the expression 
 

S
am

(ω) = σ 
1
2π ⌡⌠

–∞

∞

 R
am

(ω) e 
jωτ dω . (17) 

 
The information content of the signals can be 

compared by taking the ratio of required energy bandwidths 
of both signal structures when the same information is 
transmitted, namely, 
 
P = B

s.c.
 / B

am
, (18) 

 
where B

s.c.
 and B

am
 are the energy widths of spectra of 

amplitude–modulated waves with suppressed and 
nonsuppressed carriers, respectively. 
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The theory dictates2 that the energy width of a 
spectrum is  

 

B = 
1
S

0

 ⌡⌠
0

∞

 S(ω) dω , (19) 

 
where S

0
 =S(ω

0
) is the value of the spectral power 

density at certain characteristic frequency. 
It can easily be shown that the systems with the  

Π–shaped amplitude–frequency response have the 
coefficient P = 1. 

Let us evaluate P for an ordinary oscillation circuit. 
To do this, we use the correlation function for the 
oscillation circuit output,2 

 
K(ω) = exp (– α ⏐τ⏐) cos ω τ. (20) 
 
So, we use the above formulas to write the expression for 
the correlation function of an AM signal 
 
K

e.am
(τ) = exp (– 2α ⏐τ⏐) (21) 

 
and the correlation function for an AM signal with the 
suppressed carrier is 
 
K

e.s.c.
(τ) = exp (– α ⏐τ⏐). (22) 

 
Using formulas (21) and (22) for the spectra of 

envelope at the oscillation circuit output we have 
 

S
s.c.

(ω) = 2 ⌡⌠
0

∞

 e–α ⏐τ⏐ e–jωτ dτ = 
2α

α2 + ω2 – j 
2ω

α2 + ω2
 , (23) 

 

S
am

(ω) = 2 ⌡⌠
0

∞

 e–2α ⏐τ⏐ e–jωτ dτ = 
2α

4α2 + ω2 – j 
2ω

4α2 + ω2 . (24) 

 

Finally, formula (18) for the case of oscillation circuit 
reduces to  
 

P = 
1
S

0

 ⌡⌠
0

∞

 S
s.c.

(ω) dω/ 
1
S

0

 ⌡⌠
0

∞

 S
am

(ω) dω = 

 

=
1
S

0

 ⌡⌠
0

∞

 

4a

2a2
 + w2 dω / 

1
S

0

 ⌡⌠
0

∞

 

2α
α2

 + ω2 dω =   

= arctan ( 
ω
2α)/arctan 

ω
α = 2. (25) 

Thus, the comparison of the information content of 
AM signals against that of AM signals with suppressed 
carrier, in the case of identically varying envelopes, shows 
that P varies from 1 to 2. The maximum gain in information 
content occurs for narrow–band systems whose amplitude–
frequency response differs from Π–shaped one to a 
maximum extent. 
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