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In order to provide a possibility of studying spectral and energy characteristics of 

the radiation field of the Earth we formulate exact models for calculating spherical and 

hemispherical fluxes and densities of optical radiation in natural media that allow for 

multiple scattering effects. The radiation transfer processes are considered for the case of 

a 3– D plane layer of a medium with reflecting boundaries assuming both horizontally 

uniform and nonuniform sources. The models are constructed based only on the method of 

spherical harmonics. In order to make the models closed we have introduced certain 

radiation parameters giving their physical interpretation. 

 

Multidimensional models of the optical radiation 
transfer theory describe radiation processes in natural media 
(atmosphere, clouds, ocean, hydrometeors) more 
realistically than the one– dimensional models do. In the 
majority of problems of remote sounding of the environment 

use of such models is inevitable.1 Up-to-date computers 
allow a versatile software intended for solving different 
applied problems to be developed. The developed 
mathematical instrument, in combination with computer 
technology, provides a basis for methodical and applied 
researches concerning the problems of evolution and forecast 
of Earth's energy balance, climate, meteorology, 
atmospheric photoradiative chemistry, dynamics of ozone 
layer depletion, transboundary and local transfer of 
pollution, etc. 

The problems with horizontal periodic fluctuations of 

cloudiness were studied by Romanova.2 Some results on 

applying the method of spherical harmonics3 to solution of 
such problems for plane media with horizontal 
inhomogeneities were obtained by Predko, Lebedinskii, 
Valentyuk, Kozoderov, Mishin, et al. At the Institute of 
Atmospheric Optics, Tomsk Affiliate of Siberian Branch of 
the Russian Academy of Sciences, and Computer Center of 
Siberian Branch of the Russian Academy of Sciences the 
multidimensional problems of the optical– radiation transfer 
theory are traditionally solved by Monte Carlo method. The 
state of the art of foreign researches has been reviewed in 
Ref. 2. The approximate methods are described in the 

monograph by Zege, Ivanov, and Katsev.4  
This paper is aimed at stating a generalized model to 

calculate the total and hemispherical densities, vertical and 
horizontal fluxes of optical radiation accounting for 
multiple scattering in three– dimensional plane media. The 
radiative characteristics and parameters of radiation are 
presented via azimuthal and spherical harmonics. The exact 
mathematical models are constructed using the method of 
spherical harmonics. Physically meaningful radiation 
parameters are introduced to make these models closed. 
Such models are described in Refs. 5– 8 in the 
approximation of one–dimensional, vertically 
inhomogeneous scattering and absorbing layer. 

In this paper we deal with inhomogeneous three–
dimensional layer unbounded horizontally while having 

finite vertical size with horizontally nonuniform and 
uniform sources of radiation and reflecting boundaries. The 
exact models are described with systems of differential 
equations of the first order and contain nonlinear 
parameters dependent on moments of radiation intensity. 
Some exact relations between radiation characteristics are 
found, which enable one to modify the equations by 
changing a set of unknown functions. 

It should be noted that the problem on closing the 
system of equations is ambiguous. One of the approaches 
assumes introduction of nonlinear parameters of radiation. 
The other approach is an approximate solution of the 
problems, e.g., in the P

1
–approximation of the method of 

spherical harmonics. Because of the multidimensionality of 
the problem the radiation parameters can be found by 
different methods. The areas of applicability of the models 
proposed will be described in further studies. 

 
STATEMENT OF THE PROBLEM 

 
Consider a scattering and absorbing layer of a medium 

which is horizontally unbounded (– ∞ < x, y < ∞) and vertically 
finite (0 ≤ z ≤ H). Let it be illuminated with a radiation flux 
from above or below and let it have reflecting boundary at the 
top or the bottom. The direction of radiation propagation is 
determined by the vector s = (μ, ϕ), μ = cosϑ, where ϑ ∈ [0, π] 
is the zenith angle measured from z axis; the azimuth ϕ ∈ [0, 2π] 
is measured from x axis. For the downward radiation 

s∈ Ω+ = {(μ, ϕ): μ ∈ [0, 1], ϕ ∈ [0, 2π]} and for the upward 

going radiation s∈ Ω– = {(μ, ϕ): μ ∈ [– 1, 0], ϕ ∈ [0, 2π]}; 
Ω = Ω+ ∪ Ω–. The spatial coordinates are described by a radius–
vector r = (x, y, z) in the layer and r

⊥
 = (x, y) in the horizontal 

plane. 
The radiation intensity Φ(r, μ, ϕ) is sought as a 

solution of a boundary–value problem of the transfer theory  
 

⎩
⎨
⎧(s, grad) Φ(r, μ, ϕ) + σ

t
(r) Φ(r, μ, ϕ) = B(r, μ, ϕ) + F(r, μ, ϕ) ,

Φ⏐
Γ
0

 = f
0
(r

⊥
, μ, ϕ) + R

∧

0
 Φ ,   Φ⏐

Γ
H

 = f
H
(r

T
, μ, ϕ) + R

∧

H
 Φ ;

 (1) 

 

(s, grad) ≡ μ 
∂
∂z + sinϑ cosϕ 

∂
∂x + sinϑ sinϕ 

∂
∂y . 
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The collisional integral  
 

B(r, μ, ϕ) ≡ 
σ

s
(r) 

4 π  ⌡⌠
0

2π

 ⌡⌠
–1

1

 Φ(r, μ′, ϕ′) γ(r, cosχ) dμ′ dϕ′ ;  (2) 

the scattering phase function is normalized as follows:  
 

1 
4 π ⌡⌠

0

2π

 ⌡⌠
–1

1

 γ(r, cosχ) dμ dϕ = 
1
2
 ⌡⌠
–1

1

 γ(r, cosχ) dcosχ = 1 ; (3) 

cosχ = μμ′ + sinϑ sinϑ′ cos(ϕ – ϕ′) . 
 

In the general case the extinction coefficient 
σ

t
(r) = σ

s
(r) + σ

a
(r), where σ

s
(r) is the coefficient of the 

total aerosol plus molecular scattering, and σ
a
(r) is the 

absorption coefficient. The radiation sources 
F(r, μ, ϕ) = F

1
(r, s) + F

2
(r, s), f

0
(r

⊥
, μ, ϕ) = f

01
(s) + f

02
(r

⊥
, s), 

f
H
(r

⊥
, μ, ϕ) = f

H1
(s) + f

H2
(r

⊥
, s) and the operators R

∧

0
 Φ, R

∧

H
 Φ 

describing interaction between the radiation and the 
boundaries are determined depending on the problem to be 
solved. For a convenient writing of the boundary conditions 
we use the sets 
 

Γ
0
 = {(r, s): z = 0 , s ∈ Ω+} ,  Γ

H
 = {(r, s): z = H , s ∈ Ω– } . 

 

The even approximation of the continuous solution of the 
problem (1) given on the sphere at each point as a linear 

combination of spherical functions9  
 

Φ(r, μ, ϕ) = ∑
κ=0

∞

 Y
k
(r, μ, ϕ) , 

(4)
 

Y
κ
(r, μ, ϕ) = ∑

m=0

κ

  Φ 
c k
m (r) C 

k
m(μ, ϕ) + Φ 

s k
m (r) S 

κ

m(μ, ϕ) 

 

with the coefficients being the spherical harmonics:
 
 

Φ 
c k
m (r) = 

2 κ + 1
2 δ

m
 π  

(κ – m)!
(κ + m)! ⌡⌠

0

2π

 ⌡⌠
–1

1

 Φ(r, μ, ϕ) C 
κ

m(μ, ϕ) dμ dϕ , 

κ ≥ 0 , 0 ≤ m ≤ κ
 
; 

Φ 
s κ
m (r) = 

2 κ + 1
2 δ

m
 π  

(κ – m)!
(κ + m)! ⌡⌠

0

2π

 ⌡⌠
–1

1

 Φ(r, μ, ϕ) S 
κ

m(μ, ϕ) dμ dϕ , 

κ ≥ 0 , 0 ≤ m ≤ κ
 
; 

 

δ
m
 ≡ 1 + δ

m0
 ,  C 

κ

m(μ, ϕ) = P 
κ

m(μ) cos mϕ , 
 

S 
κ

m(μ, ϕ) =
 
(1 – δ

m0
) P 

κ

m(μ) sin mϕ ; 
 

where P 
κ

m(μ) are the associated Legendre polynomials; δ
mκ

 is 

the Kronecker symbol resulting in separation of the variables 
r, μ, and ϕ. Using the identity 
 

∑
κ=0

∞

  ∑
m=0

κ

 f 
c κ
m  C 

κ

m(μ, ϕ) + f 
s κ
m  S 

κ

m(μ, ϕ) = 

 

= ∑
m=0

∞

  ∑
κ=m

∞

 f 
s κ
m  C 

κ

m(μ, ϕ) + f 
s κ
m  S 

κ

m(μ, ϕ) , 

 

in the representation (4) we can separate out the azimuthal 
dependence  
 

Φ(r, μ, ϕ) = ∑
κ=0

∞

  ∑
m=0

κ

 Φ 
c κ
m (r) P 

κ

m(μ) cos mϕ + Φ 
s κ
m (r) P 

k
m(μ) sinmϕ = 

= ∑
m=0

∞

 Φ 
c
m(r, μ) cosmϕ + Φ 

s
m(r, μ) sinmϕ ,   (5) 

where the azimuthal harmonics 

Φ 
c
m(r, μ) = ∑

κ=m

∞

 Φ 
c κ
m (r) P 

κ

m(μ) , 
(6)

 

Φ 
s
m(r, μ) = (1 – δ

m0
) ∑

κ=m

∞

 Φ 
s κ
m (r) P 

κ

m(μ)  

are determined by the formulas
 
 

Φ 
c
m(r, μ) = 

1
δ
m

 π ⌡⌠
0

2π

 Φ(r, μ, ϕ) cosmϕ dϕ
 

, 

Φ 
s
m(r, μ) = 

1
δ
m

 π ⌡⌠
0

2π

 Φ(r, μ, ϕ) sinmϕ dϕ . 

 

If the scattering phase function can be represented as an 
expansion over the Legendre polynomials

 
 

γ(r, cosχ) = ∑
κ=0

∞

 ω
κ
(r) P

κ
(cosχ) , 

ω
κ
(r) = 

2 κ + 1
2

 ⌡⌠
–1

1

 γ(r, cosχ) P
κ
(cosχ) dcosχ , 

then using the summation theorem it is possible to separate the 

angular variables and separate out the azimuthal harmonics9  
 

γ(r, cosχ) = ∑
κ=0

∞

  ∑
m=0

κ

 γ 
κ

m(r) [C 
κ

m(μ, ϕ) C 
κ

m(μ′, ϕ′) + 

+ S 
κ

m(μ, ϕ) S 
κ

m(μ′, ϕ′)] = ∑
m=0

∞

 γ 
m(r, μ, μ′) cosm(ϕ – ϕ′), (7) 

γ 
m(r, μ, μ′) = ∑

κ=m

∞

 γ 
κ

m(r) P 
κ

m(μ) P 
κ

m(μ′) , 
(8)

 

γ 
κ

m(r) = 
2

δ
m

 
(κ – m)!
(κ + m)! ωκ

(r) . 

 

The azimuthal harmonics can be determined using the 

integrals5: 

γ0(r, μ, μ′) = 
1

2 π ⌡⌠
0

2π

 γ(r, cosχ) dϕ = ∑
κ=0

∞

 ω
κ
(r) P

κ
(μ) P

κ
(μ′) ; (9) 

γ 
m(r, μ, μ′) = 

1
δ
m

 π ⌡⌠
0

2π

 γ(r, cosχ) cosm(ϕ – ϕ′) d(ϕ – ϕ′) . 

Let us assume the following expansions to be true:  
 

F(r, μ, ϕ) = ∑
κ=0

∞

  ∑
m=0

κ

 F 
c κ
m (r) C 

κ

m(μ, ϕ) + F 
s κ
m (r) S 

κ

m(μ, ϕ) = 

= ∑
m=0

∞

  F 
c
m(r, μ) cos mϕ + F 

s
m(r, μ) sin mϕ ; (10) 

F 
c
m(r, μ) = ∑

κ=m

∞

 F 
c κ
m (r) P 

κ

m(μ) , 
(11)

 

F 
s
m(r, μ) = (1 – δ

m0
) ∑

κ=m

∞

 F 
s κ
m (r) P 

κ

m(μ) .  

The form of expressions for the expansion coefficients (10) and 
(11) depends on the specific problems and will be described in 
a separate issue, where we also discuss the problems related to 
the boundary conditions. 

The method of spherical harmonics is well described in 

the literature.3 In our paper we avoid complex representation 
of spherical functions and negative values of indices what is 
often used in theoretical investigations but is not convenient 
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in practice. For brevity we omit the arguments (r, μ) in the 

azimuthal harmonics F 
c
m(r, μ) and F 

s
m(r, μ) and the argument 

r in the spherical harmonics F 
cκ
m , F 

sκ
m . We use a mark "↓" for 

hemispherical characteristics of downward radiation which are 

determined by integrating over a hemisphere Ω+ with μ > 0 
and a mark "↑" for the hemispherical characteristics of upward 
going radiation which are determined by integrating over a 

hemisphere Ω– with μ < 0. 

 

RADIATION CHARACTERISTICS 

 

The integral (over angles) radiation characteristics, i.e. 
spherical and hemispherical densities and vertical and 
horizontal fluxes, are fully determined from zero and first 
azimuthal harmonics. The spherical characteristics are 
described by one of the spherical harmonics, whereas 
hemispherical ones are represented as sums of infinite series 
expansions over even and odd spherical harmonics. Let us give 

explicit expressions for radiation characteristics.10 
The radiation density (an actinometric flux) 
 

n(r) = ⌡⌠
0

2π

 ⌡⌠
–1

1

 Φ(r, μ, ϕ) dμ dϕ = 2 π ⌡⌠
–1

1

 Φ 
c
0(r, μ) dμ = 4 π Φ 

c0
0 (r) ; 

the density of downward going radiation  

n↓ = ⌡⌠
0

2π

 ⌡⌠
0

1

 Φ dμ dϕ = 2 π ⌡⌠
0

1

 Φ 
c
0 dμ = 

= 2 π 
⎣
⎡

⎦
⎤Φ 

c0
0  + 

1
2
 Φ 

c1
0  + ∑

n=1

∞

 t 
2n+1
0  Φ 

c, 2n+1
0 ; 

the density of upward going radiation
 
 

n↑ = ⌡⌠
0

2π

 ⌡⌠
–1

0

 Φ dμ dϕ = 2 π ⌡⌠
–1

0

 Φ 
c
0 dμ = 

= 2 π 
⎣
⎡

⎦
⎤Φ 

c0
0  – 

1
2
 Φ 

c1
0  – ∑

n=1

∞

 t 
2n+1
0  Φ 

c, 2n+1
0 ; 

 

t 
2n+1
0  ≡ ⌡⌠

0

1

 P
2n+1

(μ) dμ = 
(–1)n (2n – 1)!!

2n+1 (n + 1)!
 , n ≥ 0 , (– 1)!! = 1 ; 

the vertical radiation flux (along the z axis)  

J(r) = ⌡⌠
0

2π

 ⌡⌠
–1

1

 Φ(r, μ, ϕ) μ dμ dϕ = 2 π ⌡⌠
–1

1

 Φ 
c
0 μ dμ = 

4 π
3

 Φ 
c1
0 (r) ; 

the downward vertical radiation flux  

J↓ = ⌡⌠
0

2π

 ⌡⌠
0

1

 Φ μ dμ dϕ = 2 π ⌡⌠
0

1

 Φ 
c
0 μ dμ = 

= π 
⎣
⎡

⎦
⎤Φ 

c0
0  + 

2
3
 Φ 

c1
0  + 

1
4
 Φ 

c2
0  + 2 ∑

n=2

∞

 β
2n

 Φ 
c, 2n
0 ; 

and, the upward vertical radiation flux
 
 

J↑ = ⌡⌠
0

2π

 ⌡⌠
–1

0

 Φ μ dμ dϕ = 2 π ⌡⌠
–1

0

 F 
c
0 μ dμ = 

= – π 
⎣
⎡

⎦
⎤Φ 

c0
0  – 

2
3
 Φ 

c1
0  + 

1
4
 Φ 

c2
0  + 2 ∑

n=2

∞

 β
2n

 Φ 
c, 2n
0 ; 

β
2n

 ≡ ⌡⌠
0

1

 μ P
2n

(μ) dμ = (– 1)n+1 
(2n – 3)!!

2n+1 (n + 1)!
 ,  n ≥ 1 . 

 

It is clear that the total vertical radiation flux  
 

J(r) = J↓(r) + J↑(r) ;  J↓(r) ≥ 0 ,  J↑(r) ≤ 0 . 
 

The horizontal radiation flux along the x axis is 
 

G
x
(r) = ⌡⌠

0

2π

 ⌡⌠
–1

1

 Φ(r, μ, ϕ) sinϑ cosϕ dμ dϕ = 

= π ⌡⌠
–1

1

 Φ 
c
1 sinϑ dμ = 

4 π
3

 Φ 
c1
1  ; 

the downward horizontal radiation flux along the x axis is
 
 

G
x
↓ = ⌡⌠

0

2π

 ⌡⌠
0

1

 Φ sinϑ cosϕ dμ dϕ = π ⌡⌠
0

1

 Φ 
c
1 sinϑ dμ = 

= π 
⎣
⎡

⎦
⎤2

3
 Φ 

c1
1  + 

3
4
 Φ 

c2
1  + ∑

n=2

∞

 β
2n
1  Φ 

c, 2n
1 ; 

 

and, the upward horizontal radiation flux along the x axis is 
 

G
x
↑ = ⌡⌠

0

2π

 ⌡⌠
–1

0

 Φ sinϑ cosϕ dμ dϕ = π ⌡⌠
–1

0

 F 
c
1 sinϑ dμ = 

= π 
⎣
⎡

⎦
⎤2

3
 Φ 

c1
1  – 

3
4
 Φ 

c2
1  – ∑

n=2

∞

 β
2n
1  Φ 

c, 2n
1 . 

The horizontal radiation flux along the y axis is
 
 

G
y
(r) = ⌡⌠

0

2π

 ⌡⌠
–1

1

 Φ(r, μ, ϕ) sinϑ sinϕ dμ dϕ = 

= π ⌡⌠
–1

1

 Φ 
s
1 sinϑ dμ = 

4 π
3

 Φ 
s1
1  ; 

the downward horizontal radiation flux along the y axis is
 
 

G
y
↓ = ⌡⌠

0

2π

 ⌡⌠
0

1

 Φ sinϑ cosϕ dμ dϕ = π ⌡⌠
0

1

 Φ 
s
1 sinϑ dμ = 

= π 
⎣
⎡

⎦
⎤2

3
 Φ 

s1
1  + 

3
4
 Φ 

s2
1  + ∑

n=2

∞

 β
2n
1  Φ 

s, 2n
1 ; 

and, the upward horizontal radiation flux along the y axis is
 
 

G
y
↑ = ⌡⌠

0

2π

 ⌡⌠
–1

0

 Φ sinϑ cosϕ dμ dϕ = π ⌡⌠
–1

0

 Φ 
s
1 sinϑ dμ = 

= π 
⎣
⎡

⎦
⎤2

3
 Φ 

s1
1  – 

3
4
 Φ 

s2
1  – ∑

n=2

∞

 β
2n
1  Φ 

s, 2n
1 ; 

 

β 
2n
1  ≡ ⌡⌠

0

1

 P 
2n
1 (μ) sinϑ dμ = 

(–1)n+1 (2n + 1)!!
2n (2n – 1) (n + 1) (n – 1)!

 , n ≥ 1 . 

The horizontal radiation flux in the azimuthal plane 
ϕ = ϕ

⊥
 is 

G
⊥
(r) = ⌡⌠

0

2π

 ⌡⌠
–1

1

 Φ(r, μ, ϕ) sinϑ cos(ϕ – ϕ
⊥
) dμ dϕ = 

= π cosϕ
⊥
 ⌡⌠
–1

1

 Φ 
c
1 sinϑ dμ + π sinϕ

⊥
 ⌡⌠
–1

1

 Φ 
s
1 sinϑ dμ = 

= G
x 
cosϕ

⊥
 + G

y 
sinϕ

⊥
 ; 

 

 

the downward horizontal radiation flux in the azimuthal plane 
ϕ = ϕ⊥

 is 

G
⊥
↓(r) = ⌡⌠

0

2π

 ⌡⌠
0

1

 Φ(r, μ, ϕ) sinϑ cos(ϕ – ϕ
⊥
) dμ dϕ = 
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= G
x
↓
 
cosϕ

⊥
 + G

y
↓
 
sinϕ

⊥
 ; 

and, the upward horizontal radiation flux in the azimuthal 
plane ϕ = ϕ⊥

 is 

G
⊥
↑(r) = ⌡⌠

0

2π

 ⌡⌠
–1

0

 Φ(r, μ, ϕ) sinϑ cos(ϕ – ϕ
⊥
) dμ dϕ = 

= G
x
↑
 
cosϕ

⊥
 + G

y
↑
 
sinϕ

⊥
 . 

It is clear that G
x
 = G

x
↓ + G

x
↑, G

y
 = G

y
↓ + G

y
↑, G

⊥
 = G

⊥
↓ + G

⊥
↑ . 

 

RADIATION PARAMETERS 
 

The coefficients in equations describing the mathematical 
model for calculating the densities and fluxes, i.e. radiation 
parameters, are introduced using azimuthal and spherical 
harmonics. 

The K–integral, or the second order moment, is 

K(r) ≡ ⌡⌠
0

2π

 ⌡⌠
–1

1

 Φ(r, μ, ϕ) μ2 dμ dϕ = 2 π ⌡⌠
–1

1

 Φ 
c
0 μ2 dμ = 

= 
4 π
3

 Φ 
c0
0  + 

8 π
15

 Φ 
c2
0  ; 

the hemispherical K–integrals are  
 

K↓ ≡ ⌡⌠
0

2π

 ⌡⌠
0

1

 Φ μ2
 dμ dϕ = 2 π ⌡⌠

0

1

 Φ 
c
0
 μ2

 dμ = 

 

= 2 π 

⎣
⎡

⎦
⎤1

3
 Φ 

c0
0  + 

1
4
 Φ 

c1
0  + 

2
15

 Φ 
c2
0  + ∑

n=1

∞

 t
2n+1

 Φ 
c, 2n+1
0 ; 

 

K↑(r) ≡ ⌡⌠
0

2π

 ⌡⌠
–1

0

 Φ μ2
 dμ dϕ = 2 π ⌡⌠

–1

0

 Φ 
c
0 μ2

 dμ = 

 

= 2π 
⎣
⎡

⎦
⎤1

3
 Φ 

c0
0  – 

1
4
 Φ 

c1
0  + 

2
15

 Φ 
c2
0  – ∑

n=1

∞

 t
2n+1

 Φ 
c, 2n+1
0 ; 

t
2n+1

 ≡ ⌡⌠
0

1

 μ2
 P

2n+1
(μ) dμ = 

(–1)n+1 (2n – 3)!!
2n+1 (n + 1)!

 ,  n ≥ 1 . 

 

The coefficient of radiation diffusion along vertical 
direction is 

D(r) ≡ K(r)/n(r) = 
1
3
 + 

2
15

 Φ 
c2
0  / Φ 

c0
0  ; 

the hemispherical vertical coefficients of diffusion are  
 

D↓(r) = K↓(r)/n↓(r) ;  D↑(r) = K↑(r) / n↑(r) . 
 

The coefficient of radiation diffusion in the horizontal 
plane is 

D
⊥
(r) ≡ 1 – D(r) = 

2
3
 [ ]1

 
–

 

1
5
 Φ 

c2
0  / Φ 

c0
0 ; 

 

for downward and upward going radiation the coefficients of 
diffusion in the horizontal plane are

 
 

D
⊥
↓(r) ≡ 1 – D↓(r) ,  D

⊥
↑(r) ≡ 1 – D↑(r) . 

 

For a characteristic of angular anisotropy of radiation we 
introduce the parameters: "mean cosines" and "mean sines". 
 

The mean cosines of the vertical radiation fluxes are  

μ– ≡ J(r)/n(r) = 
1
3
 Φ 

c1
0 /Φ 

c0
0

 ; μ↓
 ≡ J↓/n↓

 ≥ 0 ; 

μ↑
 ≡ J↑/n↑

 ≤ 0 . 
 

Let us now introduce the moments of radiation in the 
horizontal plane  

μ
⊥c

(r) ≡ ⌡⌠
0

2π

 ⌡⌠
–1

1

 μ Φ sinϑ cosϕ dμ dϕ = π ⌡⌠
–1

1

 μ sinϑ Φ 
c
1
 dμ = 

4 π
5

 Φ 
c2
1 ; 

μ
⊥s

(r) ≡ ⌡⌠
0

2π

 ⌡⌠
–1

1

 μ Φ sinϑ cosϕ dμ dϕ = π ⌡⌠
–1

1

 μ sinϑ Φ 
s
1
 dμ = 

4 π
5

 Φ 
s2
1 ; 

for downward radiation  
 

μ
⊥c
⊥  ≡ ⌡⌠

0

2π

 ⌡⌠
0

1

 μ Φ sinϑ cosϕ dμ dϕ = π ⌡⌠
0

1

 μ sinϑ Φ 
c
1 dμ = π 

⎩
⎨
⎧

⎭
⎬
⎫1

4
 Φ 

c1
1

 + 
2
5
 Φ 

c2
1

 + ∑
κ=3

∞

 Φ 
c κ
1  β

2n
1

 [ ]
κ

2 κ + 1
 δ

κ+1, 2n
 + 

κ + 1
2 κ + 1

 δ
κ–1, 2n

; 

 

μ
⊥s
↓  ≡ ⌡⌠

0

2π

 ⌡⌠
0

1

 μ Φ sinϑ sinϕ dμ dϕ = π ⌡⌠
0

1
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s
1 dμ = π 

⎩
⎨
⎧

⎭
⎬
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4
 Φ 
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1

 + 
2
5
 Φ 
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1
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κ=3

∞

 F 
s κ
1
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2n
1

 [ ]
κ

2 k + 1
 δ

κ+1, 2n
 + 

κ + 1
2 κ + 1

 δ
κ–1, 2n

; 

for upward radiation  

μ
⊥c
↑  ≡ ⌡⌠

0

2π

 ⌡⌠
–1

0

 μ Φ sinϑ cosϕ dμ dϕ = π ⌡⌠
–1

0
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c
1 dμ = –π 

⎩
⎨
⎧

⎭
⎬
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4
 Φ 
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1  – 

2
5
 Φ 
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∞
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c κ
1  β
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κ

2 κ + 1
 δ

κ+1, 2n
 + 
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2 κ + 1

 δ
κ–1, 2n

; 

 

μ
Ts
↑ ≡ ⌡⌠

0

2π

 ⌡⌠
–1

0

 μ Φ sinϑ sinϕ dμ dϕ = π ⌡⌠
–1

0

 μ sinϑ Φ 
s
1 dμ = –π 

⎩
⎨
⎧

⎭
⎬
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4
 Φ 
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1  – 

2
5
 Φ 
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1  + ∑

κ=3

∞

 Φ 
s κ
1  β

2n
1  [ ]

κ

2 κ + 1
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 + 
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2 κ + 1

 δ
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. 

 
 

The angular anizontropy of horizontal fluxes of radiation 
along the x and y axes is described by mean cosines: 
 

μ
x
(r) ≡ μ

⊥c
(r)/G

x
(r) = 

3
5
 Φ 

c2
1  / Φ 

c1
1  ;   

μ
y
(r) ≡ μ

⊥s
(r)/G

y
(r) = 

3
5
 Φ 

s2
1  / Φ 

s1
1  ; 

 

μ
x
↓ ≡ μ

⊥c
↓ /G

x
↓ ;  μ

y
↓ ≡ μ

⊥s
↓ /G

y
↓ ; μ

x
↑
 
≡ μ

⊥c
↑ /G

x
↑ ;  μ

y
↑ ≡ μ

⊥s
↑ /G

y
↑ 

and mean sines
 
 

s
x
(r) ≡ G

x
(r) / n(r) = 

1
3
 Φ 

c1
1  / Φ 

c0
0  ;   

s
y
(r) ≡ G

y
(r) / n(r) = 

1
3
 Φ 

s1
1  / Φ 

c0
0  ; 

 

s
x
↓ ≡ G

x
↓ / n↓ ; s

y
↓ ≡ G

y
↓ / n↓ ; s

x
↑ ≡ G

x
↑ / n↑ ; s

y
↑ ≡ G

y
↑ / n↑ . 

Let us introduce the parameters determining the relations 
between the vertical and horizontal fluxes: 
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c
x
(r) ≡ G

x
(r)/J(r) = Φ 

c1
1  / Φ 

c1
0  ;  

c
y
(r) ≡ G

y
(r)/J(r) = Φ 

s1
1  / Φ 

c1
0  ; 

 

c
x
↓ ≡ G

x
↓/J↓ ; c

y
↓ ≡ G

y
↓/J↓ ; c

x
↑ ≡ G

x
↑/J↑ ; c

y
↑ ≡ G

y
↑/J↑ . 

 
AZIMUTHAL HARMONICS OF RADIATION 

PARAMETERS 

 
To make the mathematical models closed, we use the 

second azimuthal harmonics of the coefficients of diffusion in 
the horizontal plane, i.e. the radiation parameters 

 

D
⊥c2

(r) ≡ K
⊥c2

 / n = 
4
5
 F 

c2
2  / F 

c0
0  ;  

D
⊥s2

(r) ≡ K
⊥s2

 / n = 
4
5
 F 

s2
2  / F 

c0
0  ; 

 

D 
⊥c2
↓ (r) ≡ K 

⊥c2
↓  / n↓ ; D 

⊥c2
↑ (r) ≡ K 

⊥c2
↑  / n↑ ;  

 

D 
⊥s2
↓ (r) ≡ K 

⊥s2
↓  / n↓ ; D 

⊥s2
↑ (r) ≡ K 

⊥s2
↑  / n↑ . 

 
The second azimuthal harmonics of K–integral in the 

horizontal plane are represented vs. the azimuthal and 
spherical harmonics of intensity

 
 

K
⊥c2

 ≡ ⌡⌠
0

2π

 ⌡⌠
–1

1

 sin2ϑ Φ(r, μ, ϕ) cos2ϕ dμ dϕ = 

= π ⌡⌠
–1

1

 sin2ϑ Φ 
c
2(r, μ) dμ = 

16
5

 π Φ 
c2
2  ; 

 

K
⊥s2

 ≡ ⌡⌠
0

2π

 ⌡⌠
–1

1

 sin2ϑ Φ(r, μ, ϕ) sin2ϕ dμ dϕ = 

= π ⌡⌠
–1

1

 sin2ϑ Φ 
s
2(r, μ) dμ = 

16
5

 π Φ 
s2
2  ; 

 

K 
⊥c2
↓  ≡ ⌡⌠

0

2π

 ⌡⌠
0

1

 sin2ϑ Φ cos2ϕ dμ dϕ = π ⌡⌠
0

1

 sin2ϑ Φ 
c
2 dμ = 

= 
8
5
 π Φ 

c2
2  + π ∑

n=1

$

 b
n
 Φ 

c, 2n+1
2  ; 

 

K 
⊥c2
↑  ≡ ⌡⌠

0

2π

 ⌡⌠
–1

0

 sin2ϑ Φ cos2ϕ dμ dϕ = π ⌡⌠
–1

0

 sin2ϑ F 
c
2 dμ = 

= 
8
5
 π Φ 

c2
2  – π ∑

n=1

∃

 b
n
 Φ 

c, 2n+1
2  ; 

 

b
n
 ≡ 

1
3
 ⌡⌠

0

1

 P 
2n+1
2 (μ) P 

2
2(μ) dμ = (–1)n+1

 

(2n + 3)!!
2n

 (2n – 1)(n + 2)(n – 1)!
 , 

n ≥ 2 . 
 

The expressions for integrals K 
⊥s2
↓  and K 

⊥s2
↑  coincide 

with those for K 
⊥c2
↓  and K 

⊥c2
↑  if the subscript "c" is changed 

for "s" and cos2ϕ is changed for sin2ϕ. 
 

BACKSCATTERING CHARACTERISTICS 
 
To close the mathematical models for calculating 

downward and upward densities as well as vertical and 

horizontal fluxes of radiation we introduce the backscattering 
characteristics which depend on properties of the scattering 
phase function in the back hemisphere. 

From the condition of normalization of the scattering 
phase function (3) we have 
 

γ
0
(r, μ) ≡ ⌡⌠

–1

1

 γ0(r, μ, μ′) dμ′ = γ0
+(r, μ) + γ

0
–(r, μ) = 2 ; 

γ
0
+(r, μ) ≡ ⌡⌠

0

1

 γ0(r, μ, μ′) dμ′ = 

= 1 + 
1
2
 ω

1 
μ + ∑

m=1

∞

 ω
2m+1

 

P
2m+1

 t 
2m+1
0  ; 

γ
0
–(r, μ) ≡ ⌡⌠

–1

0

 γ0(r, μ, μ′) dμ′ = 

= 1 – 
1
2
 ω

1 
μ – ∑

m=1

∞

 ω
2m+1

 P
2m+1

 t 
2m+1
0  . 

 

As in the case with a one–dimensional plane layer we 
introduce the backscattering characteristics

 
 

γ
0
↓(r) ≡ Γ

0
↓(r) / n↓(r) = 1 – 

ω
1
(r)

2
 μ↓(r) – Μ↓(r) ; 

γ
0
↑(r) ≡ Γ

0
↑(r) / n↑(r) = 1 + 

ω
1
(r)

2
 μ↑(r) – Μ↑(r) , 

where 

Γ
0
↓(r) ≡ 2π ⌡⌠

0

1

 Φ 
c
0(r, μ) dμ ⌡⌠

–1

0

 γ0(r, μ, μ′) dμ′ = 

= 2π ⌡⌠
0

1

 Φ 
c
0(r, μ) γ

0
–(r, μ)

 

dμ ; 

Γ
0
↑(r) ≡ 2π ⌡⌠

–1

0

 Φ 
c
0(r, μ) dμ ⌡⌠

0

1

 γ0(r, μ, μ′) dμ′ = 

= 2π ⌡⌠
–1

0

 Φ 
c
0(r, μ) γ

0
+(r, μ) dμ ; 

Μ↓(r) ≡ ∑
m=1

∞

 ω
2m+1

 t 
2m+1
0  ⌡⌠

0

1

 Φ 
c
0 P

2m+1
 dμ / ⌡⌠

0

1

 Φ 
c
0 dμ , 

Μ↑(r) ≡ ∑
m=1

∞

 ω
2m+1

 t 
2m+1
0  ⌡⌠

–1

0

 Φ 
c
0 P

2m+1
 dμ / ⌡⌠

–1

0

 Φ 
c
0 dμ . 

 

Using the moments of zero azimuthal harmonics of the 
scattering phase function related by the expression 
 

γ
1
(r, μ) ≡ ⌡⌠

–1

1

 μ′ γ0(r, μ, μ′) dμ′ =

 

γ
1
+(r, μ) + γ

1
–(r, μ) = 

2
3
 ω

1
(r) μ ; 

γ
1
+(r, μ) ≡ ⌡⌠

0

1

 μ′ γ0(r, μ, μ′) dμ′ = 

= 
1
2
 + 

ω
1
(r)

3
 μ + ∑

m=1

∞

 ω
2m

(r)

 

P
2m

(μ) β
2m

 , 

γ
1
–(r, μ) ≡ ⌡⌠

–1

0

 μ′ γ0(r, μ, μ′) dμ′ = 
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= – 
1
2
 + 

ω
1
(r)

3
 μ – ∑

m=1

∞

 ω
2m

(r) P
2m

(μ) β
2m

 , 

we introduce the backscattering characteristics  

γ
1
↓(r) ≡ Γ

1
↓(r) / n↓(r) = – 

1
2
 + 

ω
1

3
 μ↓ – 

ω
2

16
 (3D↓ – 1) – N

2
↓ ; 

γ
1
↑(r) ≡ Γ

1
↑(r) / n↑(r) = 

1
2
 + 

ω
1

3
 μ↑ + 

ω
2

16
 (3D↑ – 1) + N

2
↑ , 

 

where the moments of radiation intensity, depending on the 
scattering phase function, are 

Γ
1
↓(r)

 

≡ 2π ⌡⌠
0

1

 Φ 
c
0(r, μ) dμ ⌡⌠

–1

0

 μ′ γ0(r, μ, μ′) dμ′ = 

= 2π ⌡⌠
0

1

 γ
1
–(r, μ) Φ 

c
0(r, μ) dμ ; 

Γ
1
↑(r)

 

≡ 2π ⌡⌠
–1

0

 Φ 
c
0(r, μ) dμ ⌡⌠

0

1

 μ′ γ0(r, μ, μ′) dμ′ = 

= 2π ⌡⌠
–1

0
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1
+(r, μ) Φ 

c
0(r, μ) dμ ; 

N
2
↓(r)

 

≡

 

∑
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∞

 ω
2m

 β
2m

 ⌡⌠
0

1

 Φ 
c
0 P

2m
 dμ / ⌡⌠

0

1

 Φ 
c
0 dμ ; 

N
2
↑(r) ≡ ∑

m=2

∞

 ω
2m

 β
2m

 ⌡⌠
–1

0

 Φ 
c
0 P

2m
 dμ / ⌡⌠

–1

0

 Φ 
c
0 dμ . 

 

Using the moments of the first azimuthal harmonics of 
the scattering phase function related by the expression  

γ
2
(r, μ)

 

≡ ⌡⌠
–1

1

 sinϑ′ γ1(r, μ, μ′) dμ′ = γ
2
+(r, μ) + γ

2
–(r, μ) = 

4
3
 ω

1
(r) sinϑ, 

γ
2
+(r, μ) ≡ ⌡⌠

0

1

 sinϑ′ γ1(r, μ, μ′) dμ′ = 
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2
3
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1
 sinϑ + 2 ∑
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∞

 
(2m – 1)!
(2m + 1)! ω2m

 β
2m
1  P

2m
1  , 

γ
2
–(r, μ)

 

≡ ⌡⌠
–1

0

 sinϑ′ γ1(r, μ, μ′) dμ′ = 
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2
3
 ω

1
 sinϑ – 2 ∑
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(2m – 1)!
(2m + 1)! ω2m

 β
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1  P
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1  , 

we introduce the backscattering characteristics  
 

γ 
2c
↓ (r) ≡ Γ 

2c
↓ /G

x
↓ = 

2
3
 ω

1
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c
↓ ; γ 

2c
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2
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1
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1
 – L

s
↓ ; γ 

2s
↑ (r) ≡ Γ 

2s
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y
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2
3
 ω

1
 + L

s
↑ . 

 

The moments of radiation intensity depending on the 
scattering phase function are determined by the following 
formulas 

Γ 
2c
↓  ≡ π ⌡⌠

0
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 Φ 
c
1(r, μ) dμ ⌡⌠
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0
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2
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c
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s
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L
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c
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L
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c
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L
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s
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ν
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1  . 

 
EQUATIONS FOR AZIMUTHAL HARMONICS 

 

Using the expansions of Φ, Eqs. (4) and (5), and γ, 
Eq. (7), the collisional integral (2) is presented as a Fourier 
series 

 

B(r, μ, ϕ) = 
σ

s
(r)

2
 ∑
κ=0

∞

 ∑
m=0

κ

 
1 + δ

m0

2κ + 1
 
(κ + m)!
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m(r) × 
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c κ
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κ
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s κ
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κ
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c
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s
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with the azimuthal harmonics  
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c
m(r, μ)
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σ
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4
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c
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s
m(r, μ′) γm(r, μ, μ′) dμ′ = 

= (1 – δ
m0

) 

s
s
(r)

2
 δ

m
 ∑
κ=m

∞

 
1

2κ + 1
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m(r) Φ 
s κ
m (r) P 

κ
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Substituting the expansions of Φ, Eq. (5), B, Eq. (12), 
and F, Eq. (10) into Eq. (1) and using the formulas for 
transforming the product of trigonometric functions into the 
sum we find the equality (see Eq. (27) in Ref. 9) 
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∂Φ 

s
m
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c
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c
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s
m sinmϕ + F 

c
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∞

 F 
c
m cosmϕ + F 

s
m sinmϕ . (15) 

 
The equations for azimuthal harmonics can be 

constructed in two equivalent ways: either by integrating 
Eq. (15) over the azimuth ϕ ∈ [0, 2π] with weights cosmϕ 
and sinmϕ using the condition of orthogonality of the 
trigonometric functions or by equalizing the expressions 
with the same trigonometric functions containing the 
azimuth. As a result, we obtain a system of equations which 

can be written in the generalized form,9 as follows 
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(16) 
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∂Φ 
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sinϑ
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>
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s
m+1

∂x  + (1 – δ
m1

) 
∂Φ 

s
m–1

∂x – ⎦
⎤∂Φ 

c
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∂Φ 

c
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s
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s
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In contrast to a one–dimension plane problem5 the system of 
equations (16)–(17) for the azimuthal harmonics of the 
three–dimensional problem (1) cannot be splitted. 
 

EQUATIONS FOR SPHERICAL HARMONICS 

 

The equations for spherical harmonics of radiation intensity 
in a three–dimensional plane layer can be constructed in two 
ways. 

In the first method the expansions of Φ, Eq. (4), B, 
Eq. (12), and F, Eq. (10), over spherical functions are 
substituted into Eq. (1). The equality obtained (see Eq. (37) in 

Ref. 9) is first multiplied by C 
j
i(μ, ϕ), 0 ≤ i ≤ j, and integrated 

over the sphere Ω. Then the equality is multiplied by S 
j
i(μ, ϕ), 

1 ≤ i ≤ j, and integrated over the sphere Ω. Using explicit 
expressions of integrals with spherical functions (see Appendix in 

Ref. 9) we find the system of equations for spherical harmonics9: 
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(19) 
 

where the following designations for the coefficients are 
introduced: 
 

a
j
m = 

j – m
2j – 1

 ; b
j
m = 

j + m + 1
2j + 3

 ; g
j
 = 

1
2j + 1

 ;  

h
j
m = 

1 + δ
m 0

2 (2j + 1)
 
(j + m)!
(j – m)!

 ; c
j
m = 

(j + m + 1) (j + m + 2)
(2j +3)

 ;  

d
j
m = 

(j – m – 1) (j – m)
(2j –1)

 . 
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According to the second method the expansions of F 
c
m, 

F 
s
m, Eq. (6), B 

c
m, Eq. (13), B 

s
m, Eq. (14), F 

c
m, F 

s
m, Eq. (11), 

over the associated Legendre functions are substituted into 
Eqs. (16)–(17) for the azimuthal harmonics of radiation 
intensity. Using the recurrence formulas (see Eqs. (45)–(47), 
Ref. 9) we eliminate the multipliers μ and sinϑ and 
simultaneously reduce the associated Legendre functions to a 
single upper index equal to m. The obtained equations (see 
Eqs. (48) and (49), Ref. 9) are integrated over μ on the 

segment [–1, 1] with the weight P 
j
m(μ) using the properties 

of orthogonality of the associated Legendre functions with 
equal upper indices. Finally we obtain Eqs. (18) and (19). 

The system of equations (18)–(19) is a system of 
equations for spherical harmonics of the solution of the 
problem (1) in the most general form. Different modifications, 
taking into account azimuthal symmetry, inhomogeneity along 
one or two horizontal axes, x and y, as well as any 
approximations of lower orders (for example, P

1
– or P

2
–

approximation), can be derived from this system. 
 

EXACT MODELS FOR CALCULATING RADIATION 

DENSITIES AND FLUXES 
 

Let us formulate exact, closed mathematical models11 
describing spatial distributions of density n(r) and fluxes J(r), 
G

x
(r), and G

y
(r) of radiation in three–dimensional scattering 

and absorbing layers based on four exact equations of the 
system (16)–(17) for azimuthal harmonics of solution of the 
general boundary value problem of the transfer theory (1). 

Let us integrate Eq. (16) over μ in the interval [–1, 1] 
with unit weight for m = 0 
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c
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c
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and, as a result, we obtain the first exact equation 
 

∂J
∂z + (σ

t
 – σ

s 
ω

0
) n + 

∂G
x
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Let us now integrate the same equation (16) over μ in 
the interval [–1, 1] with the weight μ and derive the second 
exact equation 
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3

 F 
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with the radiation parameters D(r), μ
x
(r), and μ

y
(r). 

Equation (16) with m = 1 
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c
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c
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is integrated over m ∈ [–1, 1] with the weight sinϑ and the 
third exact equation 
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4π
3

 F 
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with the radiation parameters μ
x
, D

⊥
, D

⊥c2
, and D

⊥s2
 is derived. 

Similar actions are undertaken with Eq. (17) with m = 1 
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and the fourth exact equation  
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3

 F 
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with the radiation parameters μ
y
, D

⊥
, D

⊥c2
, and D

⊥s2
 is 

obtained. 
If the expressions for radiation characteristics in terms of 

spherical harmonics are substituted into Eq. (21), we derive 
the exact equation (18) of the method of spherical harmonics 
with indices m = 0, j = 0: 
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Equation (22) with the vertical diffusion coefficient D 

represented in terms of spherical harmonics is equivalent to 
the exact equation (18) with indices m = 0, j = 1: 
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If in Eq. (24) we express radiation characteristics μ

x
, G

x
, 

n, D
⊥
, D

⊥c2
, and D

⊥s2
 in terms of spherical harmonics, we 

obtain the equation 
 

3
5
 
∂Φ 

c2
1

∂z  + ( )σ
t
 – 

1
3
 σ

s
 ω

1
 Φ 

c1
1  + 

∂Φ 
c0
0

∂x  – 
1
5
 
∂Φ 

c2
0

∂x  + 

+ 
6
5
 
∂Φ 

c2
2

∂x  + 
6
5
 
∂Φ 

s2
2
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which coincides with Eq. (18) of the method of spherical 
harmonics with m = 1, j = 1. If in Eq. (26) we substitute the 
expressions of radiation characteristics μ

y
, G

y
, n, D

⊥
, D

⊥c2
, 

and D
⊥s2

 in terms of spherical harmonics, then Eq. (26) 

becomes equivalent to Eq. (19) of the method of spherical 
harmonics with m = 1, j = 1: 
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The system of four equations (21), (22), (24), and (26) 
with the radiation parameters μ

x
, μ

y
, D, D

⊥
, D

⊥c2
, and D

⊥s2
 is 

the exact closed mathematical model for calculating the 
density n and fluxes J, G

x
, and G

y
 of radiation in a 

homogeneous three–dimensional layer, which has been 
constructed using the method of spherical harmonics. 

The spherical (integral over all angles) radiation 
characteristics are related exactly by the following relations: 
 

J = μ– n ,  G
x
 = c

x
 J = s

x
 n ,  G

y
 = c

y
 J = s

y
 n , (27) 

 

which involve the following radiation parameters: μ–, c
x
, c

y
 are 

the mean cosines along the axes z, x, and y, respectively, and 
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s
x
 and s

y
 are the mean sines along the axes x and y, 

respectively. Using relations (27) in the system of equations 
(21), (22), (24), and (26) it is possible to change a set of 
unknown functions and nonlinear parameters of the problem 
taking into account the requirements of a particular problem. 

From Eq. (21) we derive the representation of radiation 
density through the fluxes (σ

a
 ≡ σ

t
 – σ

s
): 
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with the help of which Eqs. (22), (24), and (26) are reduced 
to the system of three differential equations of the second 
order with mixed derivatives for determining the fluxes J, G

x
, 

and G
y
: 
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The system of equations (29)–(31) of the type of diffusion 
equations is the exact nonlinear mathematical model for 
calculating the radiation fluxes. 
 

EXACT MODELS FOR CALCULATING 

HEMISPHERICAL DENSITIES AND VERTICAL AND 

HORIZONTAL FLUXES  

OF RADIATION 
 

The models11 are constructed based on three exact 
equations (20), (23), and (25) for azimuthal harmonics of 
radiation intensity when azimuthal harmonics of the collisional 
integral (13) and (14) and the source (11) are presented as 
expansions over the associated Legendre functions. 

First, it should be noted that the system of 
equations (20), (23), and (25) is not closed since the system 
of equations (16)–(17) for azimuthal harmonics of radiation 
intensity is infinite. Second, the expansions of hemispherical 

radiation characteristics integral over angles, n↓, n↑, J↓, J↑, 

G
x
↓, G

x
↑, G

y
↓, and G

y
↑, over the associated Legendre functions 

are sums of infinite series. Third, the densities n↓ and n↑ and 

the vertical fluxes J↓ and J↑ are completely determined 

through the zeroth azimuthal harmonic F 
c
0, the horizontal 

fluxes along the axis x G
x
↓, G

x
↑ are determined by the first 

azimuthal harmonics F 
c
1, and the horizontal fluxes along the 

axis y G
y
↓, G

y
↑ are determined by the azimuthal harmonics F 

s
1. 

Fourth, the radiation characteristics are related to each other 
through a set of exact and approximate relations which enable 
one to construct different calculational models. Fifth, the 
problem on making the system of exact equations for 
calculating the aforementioned hemispherical radiation 
characteristics closed is uncertain, since one has to introduce 
nonlinear parameters depending on radiation characteristics. 
These parameters should describe the radiation transfer in a 
medium and have clear physical meaning. 

Let us integrate Eq. (29) over μ on the segments [0, 1] 
and [–1, 0] with the weight equal to unity. Using the 
definitions of radiation characteristics and radiation parameters 
in terms of azimuthal harmonics we calculate the integrals in 
an explicit form and obtain the first pair of exact equations: 
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with the parameters γ
0
↓ and γ
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↑ and the sources 
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Let us now integrate Eq. (20) over μ on the segments 

[0, 1] and [–1, 0] with the weight μ. After some simple 
transformations we find the second pair of exact equations 
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with the parameters and the sources 
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Then we integrate equation (23) over μ on the segments 
[0, 1] and [–1, 0] with the weight sinϑ and obtain the third 
pair of exact equations 
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with the parameters and the sources 

Q
2c
↓ (r) ≡ ⌡⌠

0

1

 sinϑ F 
c
1(r, μ) dμ = 

2
3
 F 

c1
1  + ∑

m=1

∞

 β
2m

 F 
c, 2m
1  ; 

 

Q
2c
↑ (r) ≡ ⌡⌠

–1

0

 sinϑ F 
c
1(r, μ) dμ = 

2
3
 F 

c1
1  – ∑

m=1

∞

 β
2m

 F 
c, 2m
1  . 

 

Let Eq. (25) be integrated over μ on the segments [0, 1] 
and [–1, 0] with the weight sinϑ. After some simple 
transformations we obtain the fourth pair of exact equations: 
 

∂[μ
y
↓ G

y
↓]

∂z  + 
⎩
⎨
⎧

⎭
⎬
⎫

σ
t
 – 

σ
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2
 [ ]4

3
 ω

1
 – γ 

2s
↓  G

y
↓ – 

σ
s

2
 γ

2s
↑  G

y
↑ + 

 

+ 
1
2
 
∂[D 

⊥s2
↓  n↓]

∂x  + 
1
2
 
∂[(D

⊥T
↓  – D 

⊥c2
↓ ) n↓]

∂y  = π Q
2s
↓  ; (38) 

 

∂[μ
y
↑ G

y
↑]

∂z  + 
⎩
⎨
⎧

⎭
⎬
⎫

σ
t
 – 

σ
s

2
 [ ]4

3
 ω

1
 – γ 

2s
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y
↑ – 

σ
s

2
 γ

2s
↓  G

y
↓ + 

 

+ 
1
2
 
∂[D 

⊥s2
↑  n‡]

∂x + 
1
2
 
∂[(D

T
↑ – D 

⊥c2
↑ ) n‡]

∂y  = π Q
2s
↑  (39) 

 

with the parameters and the sources 
 

Q
2s
↓(r) ≡ ⌡⌠

0

1

 sinϑ F 
s
1(r, μ) dμ = 

2
3
 F 

s1
1  + ∑

m=1

∞

 β 
2m
1  F 

s, 2m
1  ; 

 

Q
2s
↑(r) ≡ ⌡⌠

–1

0

 sinϑ F 
s
1(r, μ) dμ = 

2
3
 F 

s1
1  – ∑

m=1

∞

 β 
2m
1  F 

s, 2m
1  . 

 
Using the exact relations between hemispherical 

radiation characteristics 
 

J↓ = μ↓ n↓ ;  J↑ = μ↑ n↑ ; 
 

G
x
↓
 = c

x
↓
 J↓

 = (μ↓
 c

x
↓) n↓

 = s
x
↓
 n↓ ; G

y
↓
 = c

y
↓
 J↓

 = (μ↓
 c

y
↓) n↓

 = s
y
↓
 n↓; 

 

G
x
↑
 = c

x
↑
 J↑

 = (μ↑
 c

x
↑) n↑

 = s
x
↑
 n↑

 ; G
y
↑
 = c

y
↑
 J↑ = (μ↑ c

y
↑) n↑ = s

y
↑ n↑  

 

and the exact expressions for backscattering characteristics 
expressed in terms of moments it is possible to obtain different 
representations of the pairs of equations (32)–(33),  
 

(34)–(35), (36)–(37), and (38)–(39) with different sets of 
sought functions and nonlinear coefficients, i.e. parameters of 
mathematical models. 
 

APPENDIX 
 
To formulate mathematical models for calculating 

hemispherical radiation characteristics and radiation 
parameters as well as boundary conditions, we obtained the 
explicit expressions of integrals in terms of the product of the 
associated Legendre functions along the segment [0, 1]. 

If n ≠ κ and κ is odd and n is even, i.e. κ + n and ⏐κ – n⏐ 
are odd, then  

a 
nκ
m  ≡ ⌡⌠

0

1

 P 
n
m(μ) P 

κ

m(μ) dμ = (–1)

n+κ+1

2  × 

 

× 
(κ + m)! (n + m)!

2n+κ–1 (n – κ) (n + k + 1) b 
nκ
m  , (A) 

 

b 
nκ
m

 =

⎩
⎪
⎨
⎪
⎧⎣
⎡

⎦
⎤( )

n

2
! ( )

κ – 1
2

!
2

,  if m = 0;

( )
n + m

2
! ( )

n – m

2
! ( )

κ + m – 1
2

! ( )
κ – m – 1

2
! ,

if m is
 

even;

( )
κ + m

2
! ( )

κ – m

2
! ( )

n + m – 1
2

! ( )
n – m – 1

2
! ,

 

 if m is odd . 
If n ≠ κ, but k and n are even or κ and n are odd, i.e. 

κ + n and ⏐κ – n⏐ are even, then  
 

⌡⌠
0

1

 P 
n
m(μ) P 

κ

m(μ) dμ = 0 . 

 

If n = κ, then Eq. (A) cannot be used. One must take for 

a 
nn
m  = ⌡⌠

0

1

 [P 
n
m(μ)]2 dμ = 

1
2n + 1

 
(n + m)!
(n – m)! ,  m ≥ 1 ; and 

a 
nn
0  = ⌡⌠

0

1

 [P
n
(μ)]2 dμ = 

1
2n + 1

 ,  if m = 0 . 

If m = 0, n = 0, and κ is odd, then 

a 
0κ
0  = ⌡⌠

0

1

 P
k
(μ) dμ = 

(–1)

κ+3

2
 (κ – 1)!

2κ–1 (κ + 1) 
⎣
⎡

⎦
⎤( )

κ – 1
2

!
2
 ; 

and for even κ values 
 

⌡⌠
0

1

 P
κ
(μ) dμ = 0 . 

When m = 0 one can obtain the alternative expression for 
the integral  

 

a 
2n, 2κ+1
0  = ⌡⌠

0

1

 P
2n

(μ) P
2κ+1

(μ)dμ = 

= 
(–1)n+κ+1 (2κ + 1)!! (2n – 1)!!

2n+κ+1 (2n – 2κ – 1) (n + κ + 1) n! κ!
 , 
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if the equalities 
 

(2n)! = 2n (2n – 1)!! n! , (2κ + 1)! = 2κ (2κ + 1)!! κ!  
 
are used. 

 
Let us write the generalized expression for the explicit 

integral value  
 

⌡⌠
0

1

 P 
1
m(μ) P 

r
m(μ) dμ = δ

1r
 a 

11
m

 + δ
1, 2n

 δ
r, 2κ+1

 a 
2n, 2κ+1
m + 

+ δ
r, 2n

 δ
1, 2κ+1

 a 
2n, 2κ+1
m  . 
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