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The T–matrix approach is used to develop a rigorous analytical method to 
compute the extinction matrix of an ensemble of arbitrary shaped particles with an 
arbitrary square integrable function of distribution over orientation  

 
INTRODUCTION 

 
Extinction and polarization of light passed through a 

layer of particles in the atmosphere or interstellar space is 
an important source of information on the particles 
properties. The choice of a model of a particle ensemble is 
important for correct interpretation of such data, 
development of the express methods for estimating optical 
properties of particles and their identification. 

As a rule, in real situations particles are 
nonspherical, and, in addition, many physical factors such 
as magnetic field, gravitation, air flows, and so on effect 
on the orientation structure within the particle ensemble 
described by an arbitrary function of distribution over 
orientation. 

In this paper we derive analytical expression for the 
extinction matrix of an ensemble of arbitrary shaped 
particles with an arbitrary square integrable function of 
distribution over orientation using the T–matrix method. 

 
1. T–MATRIX METHOD 

 
When solving problems on the electromagnetic 

waves diffraction on nonspherical particles the T–matrix 
method by Waterman1,2 is widely used though it was 
developed for solving the problems on scattering of 
electromagnetic radiation (see, for example, Ref. 3). 

Very often in literature it is referred to as EBCM 
(extended boundary conditions method). An alternative 
justification of the T–matrix method is given in Ref. 5 
using Shchelkunoff's equivalence principle.4 It should be 
noted that this method can be naturally and consistently 
used in the case of inhomogeneous particles6–8 as well 
different systems of vector spherical harmonics (linearly 
independent solutions of the vector Helmholtz equation9) 
used by different authors produce different 
representations of the T–matrices.5,8,10 It should be noted 
that the choice of spherical harmonics in Refs. 5 and 8 is 
poor from the standpoint of further development and 
application of the T–matrix method, for example, to 
ensembles of particles with different orientation structure. 
Taking into account the invariance of the vector 
Helmholtz equation with respect to rotations of the 
coordinate system,11 the choice of spherical harmonics 
should be done based on the invariance property (in the 
sense of closeness), namely, the spherical harmonics of 
the types M

rmn and N
rmn (Ref. 9) should be transformed 

independently when rotating the coordinate system. 
The following vector spherical harmonics10,12 satisfy 

the sought invariance properties: 
 

Mmn(kr) = (–1)m dn hn
(1)(k r) Cmn(θ) exp(i m ϕ); (1) 

 

Nmn(k r) = (–1)m dn (n(n + 1)
k r  hn

(1)(k r) Pmn(q) + 

 

+ )1
k r [kr hn

(1)(kr)]'Bmn(q) exp(i m ϕ); (2) 

 

Bmn(θ) = iθ 
d
dq d n0m(θ) + iϕ 

i m
sinq d n0m(θ); (3) 

 

Cmn(θ) = iθ 
i m
sinq d n0m(θ) – iϕ 

d
dq d n0m(θ); (4) 

 

Pmn(θ) = ir d n0m(θ); (5) 
 

dn = [ ](2 n + 1)
4 n(n + 1)

1/2

. 

 
Definition and principal properties of the Wigner 

functions13 d n0m(q) are given in Appendix, hn
(1)(k r) is the 

Hankel spherical function of the first kind; ir, ih, and i
z
 are 

the orths of the spherical coordinate system; k = 2π/λ is the 
wave number, and λ is the wavelength of radiation. The 
harmonics Rg Mmn and Rg Nmn are defined analogously with 

the Hankel spherical functions substituted by Bessel 
spherical functions jn(k r). 

The series expansion of a plane electromagnetic wave 
incident on a particle has the form (hereinafter the factor  
exp(– i ω t) is omitted): 
 

Ei(r) = ∑
n=1

∞
  ∑

m=–n

n

 [amn Rg Mmn(k r) + bmn Rg Mmn(k r)] . (6) 

 

The coefficients of series expansion of the incident 
plane electromagnetic wave propagating along the (u, υ) 
direction have the form10  
 

amn = 4(–1)m in dn C*mn(u) Ei exp(–i m u);

bmn = 4(–1)m in–1 dn B*mn(u) Ei exp(–i m u),
 (7) 

 

where Ei is the vector of linear polarization. 

For the scattered field we have the following 
expansion:  
 

E s(r) =∑
n=1

∞
  ∑

m=–n

n

 [pmn Mmn(k r) + qmn Nmn(k r)] ,  r > r0, (8) 
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where r0 is the radius of the sphere circumscribed about the 

particle. 
Linear transformation relating the expansion 

coefficients of incident and scattered fields is as follows10: 
 

pmn= ∑
n'=1

∞
  ∑

m'=–n'

n'

   [T 11   mnm'n' am'n' + T 12   mnm'n' bm'n'] ;

qmn= ∑
n'=1

∞
  ∑

m'=–n'

n'

 [T 21   mnm'n' am'n' + T 22   mnm'n' bm'n'] .

 (9) 

 

Let us note that the representation of T–matrix method 
considered in Ref. 10 has some advantages over the 
representation in Ref. 5. They are in the use of the vector 
spherical harmonics that are invariant with respect to 
rotation of the coordinate system, and also in the symmetric 
form the main relationships. 

 
2. ROTATION OF A COORDINATE SYSTEM 
 
Arbitrary rotations of the coordinate system about its 

origin are completely determined by setting of three real 
parameters. The Euler angles α, β, and γ (see Ref. 13) are 
more often used as the parameters characterizing the 
rotation. 

Let us designate the coordinate systems and the values 
given in these systems by the indices 1 and 2. Then the 
Euler angles α, β, and γ determine the position of the 
second coordinate system with respect to the first one. 

As was noted above, the vector spherical harmonics (1) 
and (2) are closed with respect to rotation of the coordinate 
system10  
 

Mmn(k r, θ1, ϕ1) = ∑
m'=–n

n

  D nm'm(α β γ) Mm'n(k r, θ2, ϕ2) . (10) 

 

The reverse transformation is 
 

Mmn(kr, θ2, ϕ2) = ∑
m'=–n

n

  D n
–1

m'm(α β γ) Mm'n(k r, θ1, ϕ1), (11) 

 

where D nm'm(α β γ) are the Wigner D–functions13 (see 

Appendix). 
The relationships analogous to Eqs. (10) and (11) are 

valid for Nmn, Rg Mmn, and Rg Nmn. 

Let us represent Eq. (9) in the coordinate system 1 in 
the form 

[ ]p 

q  = [ ]T11   T12

T21   T22 [ ]a 

b . (12) 

 

Let us note that the T–matrix (12) in a fixed 
coordinate system is invariant with respect to the 
parameters of incident radiation. In the coordinate system 2, 
taking into account Eqs. (10) and (11) and designating the 

linear transform with elements Dmnm'n' = δnn' D nmm'(αβγ) 

by D, we obtain10  
 

[ ]p 

q  = [ ]D   0
0   D [ ]T11   T12

T21   T22 [ ]D–1   0
0      D–1 [ ]a 

b , (13) 

 

that is equivalent to  
 
2T ij = D1 T ij D–1,  i, j= 1, 2, ..., (14) 
 

2T ij     mnm'n'=
'

'

' '

'

.

1 1 2 2

1 2

1 1( ) ( )

n n
ijn n

mm m nm n m m

m n m n

D T D
−

=− =−

αβγ αβγ∑ ∑ (15) 

 

Using the unitarity property of the Wigner D–functions 
(A3), we can found the invariants of the T–matrix with 
respect to rotations of the coordinate system. Using 
Eqs. (A3) and (15) for fixed n and n' we obtain  
 

∑
m=–n

n

 2T ij     mnmn =

21

n n

m n m n=− =−

∑ ∑ 1T ij  m1nm2n
 ∑
m=–n

n

 D nmm1
 (α β γ) × 

× D n
–1

m2m
 (α β γ) = ∑

m=–n

n

  1T ij     mnmn; (16) 

 

∑
m=–n

n

  ∑
m'=–n'

n'

  2T ij     mnm'n'

2
 = ∑

m=–n

n

  ∑
m'=–n'

n'

  1T ij     mnm'n'

2
 (17) 

and, hence,12
 
 

∑
n=1

∞
 ∑
m=–n

n

  2T ij     mnmn = ∑
n=1

∞
 ∑
m=–n

n

  1T ij     mnmn, (18) 

 

∑
n=1

∞
  ∑

n'=1

∞
  ∑

m=–n

n

  ∑
m'=–n'

n'

  2T ij     

mnm'n'

2
=∑

n=1

∞
  ∑
n'=1

∞
  ∑
m=–n

n

  ∑
m'=–n'

n'

  1T ij     mnm'n'

2
, 

(19) 

i, j = 1, 2. 
Thus, when rotating the coordinate system, the spur of 

submatrices (16) and their analogs (18) are the invariants of  
T–matrix as are the sums of squares of absolute values of 
the elements of submatrices (17) and submatrices T ij. The 
same property is characteristic of the T–matrix as a whole. 

 
3. SCATTERING AMPLITUDE MATRIX 

 
Let the direction of the radiation propagation be along 

the unit vector n = (θ, ϕ), where the components of 
electromagnetic field θ and ϕ are designated by indices 1 
and 2, respectively. 

Let us consider a plane electromagnetic wave 
 

E i(r) = Ei exp(i k ni r) = (E i1 ih + E i2 iz) exp(i k ni r) (20) 
 

being incident on a particle. 

In the wave zone (k r > 1) the scattered wave has the 

following components10 (LP–representation): 
 

⎣
⎡

⎦
⎤E s1

E s2
 = 

exp(i k r)
k r  S(ns; ni) ⎣

⎡
⎦
⎤E i1

E i2
, (21) 

 

where S is the scattering amplitude matrix. 
Circular components of the electric field are 

determined as follows14 (CP–representation):  
 

⎣
⎡

⎦
⎤E+1

E–1
 = 2–1/2 

⎣
⎡

⎦
⎤1   –i

1    i ⎣
⎡

⎦
⎤E1

E2
. (22) 

 
The corresponding amplitude matrix has the following form 
in CP–representation:  
 

C = ⎣
⎡

⎦
⎤C+1+1   C+1–1

C–1+1   C–1–1
 = 

 

= 

1
2 ⎣
⎡

⎦
⎤S11 + iS12 – iS21 + S22   S11 – iS12 – iS21 – S22

S11 + iS12 + iS21 – S22   S11 – iS12 + iS21 + S22
 . (23) 

 
Using Eqs. (6)–(9) and (21) as well as the asymptotics of 
the function h(1)

n (k r) at infinity, we obtain the dyadic 
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representation of the scattering amplitude matrix S(ns; ni) 

(Refs. 3, 10, and 13) 
 

S(ns; ni) = 4 ∑
mnm'n'

 i n'–n–1 (–1)m+m' dn dn' exp[i(mϕs– m'ϕi)] × 

 

× {[T 11   mnm'n' Cmn(θs) + i T 21   
mnm'n' Bmn(θs)] C m'n'

* (θi) + 
 

+ [T 12   mnm'n' Cmn(θs)+i T 22   
mnm'n' Bmn(θs)] B m'n'

* (θi)/i}. (24) 

 
Omitting simple but cumbersome derivation, we write the 
expressions for elements of the amplitude matrix in CP–
representation using Eqs. (23), (24), and (A6) 
 

C+1+1 = – 
1
2  ∑

mnm'n'

 tnn' Amm'
(ϕs, ϕi) d

n
1m(θs) d n'

1m'(θi)× 
 

× (T 11
 
+ T 12 + T 21 + T 22) ; 

 

C+1–1 = – 
1
2  ∑

mnm'n'

 tnn' Amm'
(ϕs, ϕi) d n1m(θs) d n' 

–1m'(θi) × 

 
 

× (T 11 – T 12 + T 21 – T 22) , (25) 
 

C–1+1 = – 
1
2  ∑

mnm'n'

 tnn' Amm'
(ϕs, ϕi) d

n
–1m(θs) d

n'
1m'(θi) × 

 

× (T 11 + T 12 – T 21 – T 22) ; 
 

C–1–1 = – 
1
2  ∑

mnm'n'

 tnn' Amm'
(ϕs, ϕi) d n–1m(θs) d n' 

–1m'(θi) × 

 

× (T 11 – T 12 – T 21 + T 22), 
 

where 
 

tnn'= i n'–n–1[(2 n + 1)(2 n' + 1)]1/2; 
(26)

 

 

Amm'
(ϕs, ϕi)= (–1)m+m' exp[i (mϕs – m'ϕi)]; 

 

Subscripts of T ij–matrix elements are omitted for brevity. 
 

4. RADIATIVE TRANSFER EQUATION 
 
Let us use in this paper the Stokes parameters of 

incident and scattered fields in CP–representation14  
 

I2= E–1 E*+1 = 1/2 (Q – iU),  I0= E+1 E*+1 = 1/2 (I – V),

I–0= E–1 E*–1 = 1/2 (I + V),  I–2= E+1 E*–1 = 1/2 (Q + iU),
(27) 

 

where I, Q, U, and V are the Stokes parameters in LP–
representation.15 

Taking into account the polarization, propagation of 
electromagnetic radiation in a rarefied medium of scatters 
arbitrarily located in space is described by the transfer 
equation15,16  
 

dI(r, ni)

d s  = nd(r) ⎣
⎡
 

 

K(r, ni) I(r, ni)+⌡⌠
4p

dns Z(r, ni, ns) ⎦
⎤

 

 

I(r, ns) ,(28) 

 

where I(r, n) is the Stokes vector, K(r, n) is the extinction 
matrix, Z(r, ni, ns) is the scattering matrix at the point r, 

and nd(r) is the number density of particles. Derivative in 

the left–hand side is taken with respect to the direction ni. 

Let us consider the equation for the coherent 
component in the direction ni, ignoring the second term that 

describes the multiple scattering effects. In this case the 
transfer equation has the form 

 

dI(r, ni)

d s  = nd(r) K(r, ni) I(r, ni) . (29) 
 

Numerical solution of Eq. (29) is not a problem 
provided that nd(r) and K(r, n) are known. For the 

parametrization r = r(s) and under the initial condition  
 

I(r(0), ni) = I0 (30) 
 

for homogeneous medium the solution of Eq. (29) has the 
form 
 

I(r(s), ni) = exp 

⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
0

s

 d s' nd(r(s'))K(r(s'), ni)  I0. (31) 

 

Exponential function having a matrix as an argument 
is defined as follows: 
 

exp(A) = ∑
n=0

∞
 An/n! . (32) 

 

Equation (31) can be considered as the generalized Bouguer 
law for a polarized radiation. 
 

5. EXTINCTION MATRIX OF AN ENSEMBLE OF 
PARTICLES WITH ARBITRARY SHAPES AND 

ORIENTATION 
 
Coming back to the initial problem, let us note that in 

order to determine the extinction matrix of the ensemble of 
particles with different orientations for the coherent 
component it is necessary to average relevant single–particle 
matrices taking into account the density function of 
distribution of particles over orientation. 

Using LP–representation of the extinction matrix16 and 
formulas of its transformation to CP–representation we obtain 
the following CP–representation for the extinction matrix 

 
 

K(ni) = – i 
2π
κ
2 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤<C+1+1 + C * –1–1>

<C–1+1>

<–C * +1–1>

0

   

<C+1–1>

<C–1–1 – C * –1–1>

0
<–C * +1–1>

   

<–C * –1+1>

0
<C+1+1 – C * +1+1>

<C–1+1>

   

0
<–C–1+1>

<C+1–1>

<C–1–1–C * +1+1>

, (33) 

 
where angular brackets in the expression mean averaging over 
corresponding expressions (25) with the argument (ni, ni) and 

taking into account the distribution over orientations. To 
estimate the extinction matrix (33) elements it is necessary 
and sufficient to know <T ijmnm'n' > for their subsequent 

substitution into Eq. (33). 

Let some coordinate system to exist where the 
directions of scattered and incident radiation are 
described by the aforementioned parameters, and let it be 
called the laboratory coordinate system, the choice of 
which depends on the observational conditions and 
certain theoretical considerations. 
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Let p(α β γ) be an arbitrary function of particles 
orientation distribution density square integrable within the 
range [0, 2π]×[0, π]×[0, 2π]. In this case the following 
expansion is valid13: 
 

p(αβγ) = ∑
n=0

∞
  ∑

m=–n

n

  ∑
m'=–n

n

  
2 n + 1

8π2  pn
mm' D

n
mm'(αβγ), (34) 

 

where the expansion coefficients [see Eq. (A4)] are  
 

pn
mm' = ⌡⌠

0

2π

 
  dα ⌡⌠

0

π

 
  sinβ dβ ⌡⌠

0

2π

 
  dγ p(αβγ) Dn*

mm'(αβγ). (35) 

 

Let A be the coordinate system related to the particle. The  
T–matrix of the particle is calculated in this system. The 
particle orientation is determined by the angles α, β, and γ 
that describe the rotation of the laboratory coordinate 
system with respect to the coordinate system A. 

Taking into account Eqs. (15), (A2), (A3), (A5), (A7), 
and (A8) as well as the orthogonality property of the 
functions exp(imα) and exp(imγ), the orientation–averaged 
Tij–matrices, in the laboratory coordinate system, have the 
form 
 

<T ij      mnm'n'> = ∑
m1m2

 (–1)
m'–m2  ∑

l=õn–n'õ

n+n'

    pl  
m–m' m2–m1

 × 

 

× C lm–m'
mn n'–m' C 

lm1–m2  
nm1 n'–m2

 T ij       m1nm2n'(A), (36) 

 

where C 
mn  
n1m1 n2m2

 are the Clebsch–Gordan coefficients.13  

The extinction matrix of the ensemble of particles can be 
obtained by substitution of Eq. (36) into Eqs. (25) and (33). 

Let us consider some consequences of Eq. (36). 
a) The particular case of p(αβγ) = p(β) was considered 

in Ref. (19). Taking into account Eq. (35), the formula (36) 
can be reduced to19 (m = m', m1 = m2)  
 

<T ij  mnm'n'> = δmm' ∑
m1=–M

M

  (–1)
m–m1  ∑

l=õn–n'õ

n+n'

     pl
00 C l0 nm n' –m× 

 

× C l0nm1 n'–m1
 T ij       m1nm1n'(A), (37) 

 

where M = min(n, n'). This case takes place when only one 
factor of orientation (magnetic field in Ref. 19) works. 

b) For arbitrarily oriented particles p(αβγ) = 1/8π2, 
and only one coefficient in Eq. (29) differs from zero: p 0

00

 = 1. Let us make use of the relationship13 
 

C 00 
nm n–m = (–1)

n–m
(2 n + 1)–1/2, (38) 

 

and also choose the direction of incident radiation along the 
z–axis of the laboratory coordinate system with θI = θs = 0 

and ϕi = ϕs = 0. In this case the extinction matrix is 

invariant with respect to the direction of incident radiation 
if Stokes vectors of incident and scattered radiation are set 
in the same plane. This can be reached by rotating of the 
reference plane, for example, that of the Stokes vector of 
incident radiation. 

Transformation of the Stokes vector parameters at 
rotating the reference plane by an angle ψ clockwise with 
respect to the propagation direction is described as17  
 

In(ψ) = exp(inψ) In(0),  n = 2, 0, –0, –2. (39) 
 

Taking into account the relationships13  
 

d n
–11(0) = d n

1–1(0) = 0,  d n
11(0) = d n

–1–1(0) = 1 (40) 
 

the extinction matrix has the diagonal form, where  
 

<C+1+1> = 
1
2 i ∑

mn

  (T 11  mnmn(A) + T 12  mnmn(A) + 

+ T21  
mnmn(A) + T 22 mnmn(A)); 

(41)
 

<C–1–1> = 
1
2 i ∑

mn

  (T 11  mnmn(A) – T 12  mnmn(A) – 

– T 21  mnmn(A) + T 22 mnmn(A)). 
 

The expressions (41) are invariant with respect to a 
coordinate system A (see Eq. (18)). 

The extinction matrix in LP–representation also has 
the diagonal form with the diagonal elements Cext 

(extinction cross section); Cext being the half–sum of K00 

and K–0–0 elements of the extinction matrix in CP–

representation and20  
 

Cext = – 
2p

k2 Re ∑
mn

 (T 11  mnmn(A) + T 22 mnmn(A)). (42) 

 

c) For an ensemble of uniformly oriented particles with 
p(αβγ) = δ(α – α0) δ(cosβ – cosβ0) δ(γ – γ0), according to 

Eq. (35) and the definition of the Dirac delta function δ(x), 
p n

nm' = D n*
mm'(α

0
β
0
γ
0
). Using the properties of the Wigner  

D–functions (see Appendix) and Eq. (15) we obtain, in the 
right–hand side of Eq. (37), the expression for Tij–matrix of 
a single particle with the orientation α

0
β
0
γ
0
 in the laboratory 

coordinate system. 
Let us present, using the results obtained, the 

derivation of the formula for the extinction cross section of 
an ensemble of arbitrarily shaped particles with the 
distribution over orientations described by Eq. (34). 

 
6. EXTINCTION CROSS SECTION OF  

AN ENSEMBLE OF PARTICLES 
 
Let us write the formula for the extinction cross 

section of a single particle in the laboratory coordinate 
system in the form21  

 

Cext = – 

π
κ
2 Re{(a*[T11 a + T12 b]) + (b*[T21 a + T22 b])}, (43) 

 

where the scalar product (a*p) is defined by the formula 
 

(a*p) = ∑
mn

 a *mn pmn. (44) 

 

Taking into account the linearity of Eq. (43) with 
respect to the T–matrix elements for a and b fixed in a 
selected coordinate system, the expression for the extinction 
cross section of an ensemble of particles has the same form, 
(43), where T ij–matrices are replaced by <T ij>–matrices 
with all the consequences ensuing therefrom. 

Let us give in an explicit form the coefficients of 
expansion of the incident plane electromagnetic wave 
propagating along an arbitrary direction and of arbitrary 
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polarization in the laboratory coordinate system. Then we 
believe that the rotation of the laboratory coordinate system 
making it coincident with the coordinate system, in which 
the z–axis corresponds to the direction of wave propagation 
and x–axis corresponds to the polarization vector (Ei = iu), 

is described by the Euler angles αi, βi, and γi. The 

coefficients of expansion (7) have a simple form in the 
coordinate system connected with the propagation of radiation 
polarized along x–axis (see Eqs. (3), (4), (7), and (A6)) 

 

amn= δmþ1 i 
n+1(2 n + 1)1/2; 

(45)
 

bmn=
 m δmþ1 i 

n+1(2 n + 1)1/2. 
 

Taking into account Eq. (10), the expansion coefficients in 
the laboratory coordinate system have the form 
 

amn= i n+1 (2 n + 1)1/2 [D n
m1

(αi βi γi) + D n
m–1(αi βi γi)] ; 

(46)
 

bmn= i n+1 (2 n + 1)1/2 [D n
m1

(αi βi γi) – D n
m–1(αi βi γi)] 

 

and for polarization along the y–axis (Ei = iv)  
 

amn= i n (2 n + 1)1/2 [D n
m1

(αi βi γi) – D n
m–1(αi βi γi)] ; 

(47)
 

bmn= i n (2 n + 1)1/2 [D n
m1

(αi βi γi) + D n
m–1(αi βi γi)] . 

 

For an arbitrary elliptic polarization the incident 
radiation can be presented in the form of linear combination 
of two coherent waves. The same is valid for corresponding 
extinction cross sections. For an unpolarized incident 
radiation the extinction cross section is equal to the half–
sum of the extinction cross sections for orthogonally 
polarized incident waves. 

 
7. DISCUSSION AND CONCLUSIONS 

 
As was shown, the T–matrix method combined with 

the quantum theory of angular momentum13 is an adequate 
method for estimating the matrices and cross sections of 
extinction of an ensemble of particles with arbitrary shapes 
and orientation, and it provides a possibility of replacing 
the cumbersome integration by an analytical method. Let us 
note that the same is valid for the estimation of the 
extinction cross sections.21  

The T–matrix method is effective for the particles 
with the shape of body of revolution with a smooth surface 
(the numerical version is discussed in Ref. 22). For 
ellipsoidal particles23 the time of computation of the T–
matrix is two orders of magnitude greater than that for the 
spheroidal particles.24 

For axially symmetric particles, in the case when z–
axis of the coordinate system A is the rotation axis of the 
particle, some simplifications are possible connected with 
the relationships10,12 

 

T ij  mnm'n' = δmm'
 T ij  mnn',  T ij  –mnn' = (–1)i+j T ij  mnn', (48) 

 

that makes it possible to reduce the number of summation 
indices in Eq. (36) by one and to halve the bulk of 
calculations. 

For axially symmetric particles (for example, spheroids, 
cylinders, etc.) with the size less than the wavelength of 
incident radiation, in the Rayleigh approximation 
(n = n' = 1); m, m' = –1, 0 ,1) the T–matrix elements are 
expressed in an explicit form10,24  

 

T ij  mnm'n' = δi2 δj2 δmm' 
Tm. (49) 

 

In this case all the parameters considered in the paper 
have the explicit form. Their use makes it possible to study 
the regularities of propagation of the polarized radiation, for 
example, in media with anysotropy caused by the molecules 
orientation, on the basis of the generalized Bouguer law (31). 

The results obtained can be useful for theoretical 
studies in atmospheric optics for estimating the extinction 
and polarization of radiation passing through a layer of 
particles with different orientation structure. For a more 
effective calculations the radiation propagation direction can 
be chosen along z–axis, that allows significant 
simplifications (see Eqs. (25), (26), and (40)) of the 
calculations to be achieved. 

 
APPENDIX: WIGNER D–FUNCTIONS 

 
Wigner D–functions D nmm'(αβγ) are defined as matrix 

elements of irreducible representation of the weight n on the 
rotation group11,13 or as matrix elements of the rotation 
operator D(αβγ) in JM–representation13  
 

<J M ⏐D(α β γ)⏐ J' M'> = δJJ' D Jmm'(α β γ). (A1) 

 
Functions D nmm'(αβγ) are written in the form of a 

product of three factors, each of which depends only on one 
Euler angle,13  
 

D nmm'(α β γ) = exp(–i m α) d nmm'(β) exp(–i m'γ), (A2) 
 

where d nmm'(β) are the Wigner functions13 that satisfy the 

conditions of unitarity13 
 

[D–1(α β γ)] nmm' = [D*(α β γ)] nm'm; 
(A3)

 

∑
m=–n

n

  Dn
mm'(α β γ) D n*

mm1
(α β γ) = 

= ∑
m=–n

n

  Dn
mm'(α β γ) Dn–1

m1m
(α β γ) = δm'm1

  

 

and orthogonality 
 

2 n + 1

8π2  ⌡⌠
0

2π

 
  dα ⌡⌠

0

π

 
  sinβ dβ ⌡⌠

0

2π

 
  dγ D nmm'(α β γ) × 

 

× D
n*1
m1m'1

(α β γ) = δnn1
 δmm1

 δm'm'1
 (A4) 

 

for the functions d nmm'(β)  

⌡⌠
0

π

 
 sinβ dβ d nmm' (β) d n'

mm'(β) = 
2

2 n + 1 δnn'. (A5) 

 

Functions d nmm'(β) satisfy the following relations13: 
 

m
sin b d n0m(β)⏐

β=0
= 1/2 δmþ1[n(n + 1)]1/2, 

 
d

d b d n0m(β)⏐
β=0

= 1/2 m δmþ1[n(n + 1)]1/2, 
(A6)

 

m
sinb dn

0m(β) = 1/2 [n(n + 1)]1/2[d n1m(β) + d n–1m(β)], 
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d
d b d n0m(β)= 1/2 [n(n + 1)]1/2[d n1m(β) – d n–1m(β)] 
 

as well as the multiplication theorem in the form  
 

d nmm'(β) d n'
m1m'1

(β) = ∑
n1=⎢n–n'⎢

n+n'

   C 
n1m+m1
nmn'm1

 C 
n1m'+m'1
nm'n'm'1

 d 
n1
m+m1 m'+m'1

(β)  

(A7) 
and the symmetry relations  
 

d nmm'(β) = (–1)
m'–m 

d n–m–m'(β) = (–1)
m'–m 

d nm'm(β). (A8) 
 

The product of two D–functions D 
n1
m1m'1

(αβγ) and D 
n2
m2m'2

(αβγ) can be written in the form of the following sum 
referred to as the Clebsch–Gordan series13: 
 

D 
n1
m1 m'1

(α β γ) D 
n2
m2 m'2

(α β γ) =  

 

= ∑
n3=⎢n1–n2⎢

n1+n2

   C 
n3m1+m2
n1m1n2m2

 D
n3
m1+m2 m'1+m'2

(α β γ) C 
n3m'1+m'2
n1m'1 n2m'2

. (A9) 

 

Recurrent relations for calculating the Wigner D–functions 
and the Clebsch–Gordan coefficients are given in Ref. 13.  
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