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The description of numerical models of adaptive system elements is continued.  
In particular, a model of the Hartmann sensor and an algorithm for discontinuous 
phase surface joining are considered.  Models of some control elements such as modal 
and zonal correctors and segmented mirror and two models of flexible mirror (static 
and dynamic) are also presented. 

 
1. IDEAL DEVICE FOR PHASE RECORDING AND  

ALGORITHM FOR PHASE SURFACE JOINING 
 
In solving numerically the adaptive optics problems the 

models of ideal devices operating as optical elements without 
limitations, characteristic of real physical devices, are often 
used.  A model of an ideal adaptive mirror that enables one to 
assign arbitrary phase profile, a model of an ideal phase 
sensor, ideal wave–front conjugation device, and so on are 
among such models.  These models are mathematical 
abstraction, nevertheless they allow the qualitative (without 
element–induced limitations) analysis of beam control in the 
atmosphere to be made. 

For an ideal wave–front sensor, the phase distribution is 

ϕ(x, y) = arg(E), 

where E is the complex amplitude of a field.  Because the 
argument of a complex number is ambiguous function, this 
relation may be used only for phase surfaces continuous in the 
interval [–π; +π].  To remove this limitation, one needs to 
obtain the total phase of the field 

ϕ(x, y) = Arg(E) = arg(E) + 2π m,    m = 0, ± 1, ± 2, ... ,  (1) 

i.e., to determine the parameter m (integer) from the condition 
of the surface continuity at any point of a beam cross section.  
It should be noted that this condition is invalid in the 
presence of wave–front dislocations.  Otherwise for obtaining 
the untruncated phase distribution the conventional methods 

of two–dimensional function reconstruction
1

 from its first 
differences can be used. In the nodes (I, J) of a computation 
grid these differences are calculated as follows: 
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where N is the size of a grid.  It is easy to verify that the 
discrete Fourier transform (DFT) of the sum of the second 
differences of the sought–after function 
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is related to its DFT by the relationship 
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As follows from Eqs. (4) and (5), for the phase 
reconstruction one needs to compute the inverse DFT of the 
function 

ϕ
∼
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,  (6) 

i.e., the sought–after function is determined as follows: 
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In fact, this algorithm is equivalent to that for a solution 
of the Poisson equation with periodical boundary 
conditions in the net–point representation.  Different 
versions of algorithms for phase evaluation from its 
differences measured with interferometric wave–front 
sensors solve the same equation.  Because of this, the 
examined algorithm for the total phase reconstruction from 
the known complex amplitude also can be treated for 
simulation of an interferometric sensor with its spatial 
resolution being coincident with the step of a computation 
grid.  In the presence of wave–front dislocations 
implementation of the above–described algorithm yields 
smooth phase that does not coincide with the argument of 
the initial complex amplitude. 
 

2. MODEL OF A HARTMANN SENSOR 
 

In real adaptive optics systems a Hartmann sensor is 
commonly used for recording of a phase surface.  Schematic 
view of the sensor is depicted in Fig. 1.  In accordance with 
the design of the device the following algorithm was 
implemented in our numerical model: 

1. Setting of the sensor parameters (the number of 
subapertures and the overall dimensions of the aperture). 

2. Separation of a portion falling within a subaperture 
from the complex amplitude of the field and nullifying the 
field beyond this subaperture. 
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3. Multiplication of the separated portion of the field 
by the apodization function, which has the form  

ρ(x, y) = exp [– (x
8
 + y

8
) / a

8

0
],  (8) 

where a0 is the radius of the subaperture, and the origin of 

the coordinate system is at the center of the subaperture.  
This operation is accomplished primarily to diminish the 
calculational error in solving numerically the propagation 
problem. 

4. Solution of the propagation problem for the field 
obtained after operations 2 and 3.  In this case it is assumed 
that each subaperture located in the sensor plane focuses the 
corresponding portion of the field to the image plane 2 (see 
Fig. 1). 

5. Calculation of the local (within the subaperture) 
shifts of the beam's center of gravity (dxk, dyk) from its 

undisturbed position and calculation of the local tilts  

(S
x

k
 = dx

k
 /F, S

y

k
 = dy

k
 /F, where k is the serial number of 

subaperture, and F is the focal length).   
Operations from 2 to 5 are executed for each 

subaperture;  after accomplishing this cycle, item 6 is 
executed. 

 
à á 

 

FIG. 1. Schematic view of a Hartmann sensor:  aperture 
of the sensor (a);  propagation of beams from the aperture 
plane (1) to the image plane (2) and separation of local 
shifts of the beam's center of gravity (b). 

6. Assigning the phase surface by a set of Zernike 
polynomials.  Polynomial coefficients are found by the 
least–squares method from the condition of rms error 
minimum 
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Here, Ns is the number of subapertures, Nz is the number 

of polynomials, S
x

k
 and S

y

k
 are the local tilts to the x and y 

axes within the kth subaperture, A
l are polynomial 

coefficients, and Z
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l
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linear function x Z
x

lk
 + y Z

y

lk
 + C

lk
 within this subaperture.  

A solution to the system of equations (9) (i.e., 
determination of A

l coefficients) means that the phase 

profile represented by a set of Zernike polynomials is found 
from the intensity distribution.  

The results of numerical experiments on correction for 
atmospheric distortions of laser beam with the use of the 
above–described model of the Hartmann sensor are given in 
Ref. 2. 

 
3. ZONAL CORRECTOR 

 

When constructing the model of zonal corrector, we 
describe the mirror surface W(x, y) by linear combination 
of the response functions of actuators  

W(x, y) = ∑
l=1

N

 A
l
 I

l
(x, y),  (10) 

where  N is the number of actuators, A
l
 is the amplitude of 

displacement, and I
l
 is the response function of the lth 

actuator.  The Gaussian form of the actuator response 
function was assumed. 

Approximation of the phase profile ϕ(x, y) by the 
mirror was performed by the least–squares method, and the 
coefficients A

l
 were found from the condition of minimum of 

the function  

Δ2 = ⌡⌠      ⌡⌠  
S   

(ϕ(x, y) – W(x, y))
2
 dx dy,  (11) 

where S is the area of the corrector aperture.  
Despite the fact that in distinction to the corrector 

under consideration the form of the response function of a 
real mirror is not symmetrical and depends on the device 
geometry (in particular, on the arrangement of the mirror 
clamping points, configuration of actuators, etc.), in some 
cases the use of this simplified model enables one to analyze 
the operation of an adaptive system with satisfactory 

accuracy.3 
4. MODAL CORRECTOR 

 

In many theoretical investigations of the adaptive 
optics system operation the mirror surface is represented as 
superposition of polynomials (usually Zernike 

polynomials)4,5  
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where i is the serial number of polynomial, Nz is the total 

number of polynomials used to construct the model, A
i
 is 

the polynomial coefficient, 
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Using the model under study, a series of investigations 
on the dependence of the quality of compensation for 
atmospheric distortions on the number of Zernike polynomials 

Nz reproduced by a corrector was performed.
6,7

 The 
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calculations accomplished have shown that using modal 
corrector one can determine the degree of complexity of the 
phase surface to compensate for distortions under various 
conditions, as well as to predict approximately the required 
number of actuators of an adaptive mirror. 

 

5. SEGMENTED MIRROR 
 

The reflecting surface of a segmented mirror is a set of 
square or hexagonal elements inscribed in a circular aperture 
(Fig. 2). The numerical model used by us allows the number 
of segments and degrees of freedom for each element to be 
changed from one (only shift is set) to three (setting of shift 
and tilts to two perpendicular axes). 

 
FIG. 2. Segmented mirror with hexagonal elements. 

 

Reproduction of a given phase surface by a segmented 
mirror was performed by a least–squares method.  The 
accuracy of reproduction and the efficiency of a mirror in the 
problem of compensation for atmospheric turbulence were 
considered in Ref. 8. 

 
6. STATIC MODEL OF A FLEXIBLE MIRROR 
 
In numerical experiments the model of a thin 

homogeneous plate was used as a flexible mirror.  Static 
deformations of the plate were described by equation of 

biharmonic type9  
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where (x, y) are the coordinates in the plane of the plate, D is 
the cylindrical stiffness, and f is the lateral load.  At the 
points of rigid clamping of the mirror on the frame (at these 
points the plate cannot be shifted, and deformations appear 
when tilting the mirror) the boundary conditions can be 
written in the form: 

W
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while at the hinged point (where tilting causes no 
deformations) 
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Here ∂/∂n and ∂/∂τ are the normal and tangential 
derivatives with respect to the plate plane, and σ is the 
Poisson coefficient. 

Numerical solution of Eq. (13) was found by the 

finite–element method.10  By the method, the plate was 
divided into a set of elements, with the local coordinate 
system (Οξ, Οη) affixed to each element.  Deformations of 
each element were described by the vector 

w = 
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η
, 

where ξ is the vector of lateral shifts of the element angular 
points (nodes of a computation grid), ϕ and η are the 
vectors of tilt angles with respect to the Oξ and Oη axes.  
The vector w has 3Ne components, where Ne is the number 

of nodes of a grid bounding the element. 
The vector of generalized forces Q is associated with 

the vector of generalized coordinates w and has the form 

Q = 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫P

N
T
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where P is the vector of shearing forces, and N and T are 
the vectors of deflection moments with respect to the axes 
of the local coordinate system. The relation between w and 
Q, found by the virtual displacement method, has the 

form10  

[k] w – f = Q.  (16) 

The first term in the left–hand side of Eq. (16) describes 
the generalized elastic forces ([k] is the stiffness matrix of 
an element), and the second term describes the external 
forces.  In the right–hand side of Eq. (16), the forces of 
interaction between the elements are involved. The stiffness 
matrix [k] is found as an integral of the element potential 
energy density, in this case the calculation is significantly 

simplified with limitations on the shape of deflection.10 For 
the deflection shape described by a finite power series, the 
matrix [k] was calculated and presented in Ref. 10. 

Taking into account the conditions of element 
conjugation that follow from the requirement for the 
continuity of the field of model displacements as a whole 
and equilibrium of interaction forces between elements, an 
equation describing static deformation of the whole model 
can be derived 

[K] W = F.  (17) 

Here W is the vector of the generalized coordinates of the 
model,  F is the vector of external forces (both vectors are 
3Nm – dimensional, where Nm is the number of nodes of 

the model). The stiffness matrix of the plate [K] also can be 
found from the conditions of element conjugation, with the 
order of the matrix being 3Nm × 3Nm. Here, it should be 

emphasized that even for rare grid the operation with the 
matrix [K] is difficult because of a large number of its 
elements (this concerns mainly the operations of matrix 
inversion and data transfer from a hard disk to a random–
access memory;  the last procedure requires too much time).  
Thus for the grid 9×9 (Nm = 81) the matrix [K] is of order 

243×243. 
The order of the stiffness matrix [K] can be 

decreased10 (reduction is accomplished), and operations 
with it are simplified if only transverse forces are exerted to 
the model, i.e., the vector F included in Eq. (17) is of the 
form 

F = 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫P

0
0

. 

In this case the stiffness matrix components to be multiplied 
by the zero components of the F vector can be excluded 
beforehand.  The second reduction of the matrix [K] is 
carried out using the data on the geometry of actuator 
arrangement, assuming that at the points where the 
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actuators are absent external forces do not act on the model.  
As a result of reduction, the order of the matrix is decreased 
down to (Nm –Nact )×Nact (Nact is the number of 

actuators), i.e., for 9×9 grid the stiffness matrix for a mirror 
with five actuators would be of the order 76×5, that is, 
much lower than before the reduction. 
 

7. NUMERICAL MODEL OF A DYNAMIC MIRROR 
 

In the design of an adaptive optical system we have 
constructed a numerical model of a dynamic mirror enabling 
us to record the transient processes under deformation of a 
flexible plate.  In this case deflection of the reflecting 
surface W(x, y) was described by the matrix equation 
which, as equation (17), was obtained on the basis of the 

virtual work principle10   

[ M] W
..

 + [ G] W
.

 + [ K] W = F.  (18) 

Here [M], [G], and [K] are the inertia, oscillation damping, 
and stiffness matrices, respectively.  The system of 

equations (18) was solved by the Runge–Kutta method.11  
The result of the system solution was the dynamic field of 
lateral shifts of the model nodes, which describes the 
movements of the plate under the action of given forces.  
On the basis of this computational scheme the models of a 
mirror shown in Fig. 3a and b were constructed. 
 

 
a 
 

 
b 
 

FIG. 3. Models of a flexible dynamic mirror:  points of 
actuator locations (Í) and points of mirror clamping on a 
frame (Õ–) are shown.  The serial numbers of points where 

surface displacements were registered are shown on the 
models.  Actuators are numbered by Roman numerals. 
 

The transient processes illustrated in Figs. 4 and 5 
occur when reproducing the given surface by the dynamic 
corrector.  Shown here are the shifts of the points arranged 
on the mirror radius and the standard deviation ε(t) of the 
corrector surface W(x, y, t) from the given profile ϕ(x, y) 
defined by the formula 

ε(t)=
⌡⌠ ⌡⌠ (ϕ(x, y)– W(x, y, t))

2

 ρ(x, y) dx dy

⌡⌠ ⌡⌠ ϕ(x, y)
2

 ρ(x, y) dx dy
, (19) 

 
where ρ is the weighting function. 

Let us consider the accuracy of parabolic surface 
approximation by a flexible mirror. The action F was 
determined by the least–squares method. In Eq. (17) the 
vector F was introduced as follows (step action): 

F = 
⎩
⎨
⎧

 

0, t ≥  0,
(f1, f2, ... , fn), t ≤ 0,   (20) 

Here fi are the components of the vector F, and n is the 

number of actuators. 
 

 
 

FIG. 4. Transient processes for the model of a mirror 
shown in Fig. 3a:  shifts of reflecting surface at points 1–
5 (a) and rms error ε(t) (b). 
 

 
 

FIG. 5. Transient processes for the model of a mirror 
shown in Fig. 3b. 
 

Because the damping coefficient was chosen small 
enough, it is practically impossible to see the damping of 
surface oscillations in the figures.  The amplitude of 
oscillations of the function ε is small in comparison with its 
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values, but without damping the accuracy of surface 
reproduction is insufficient (for a similar static mirror in 
focusing reproduction ε is 0.10–0.12, see Ref. 12).  The data 
presented demonstrate the increase of frequency with the 
decrease of the distance between the clamped points and 
points of force application. 

 

 
 

FIG. 6. Oscillations of a mirror surface:  (a) transient 
processes for smooth increase of loading applied to a mirror, 
for the corrector model shown in Fig. 3b, and (b) variation 
of forces exerted to the mirror at points V, VIII, and IX. 

 
Earlier we considered the use of dynamic mirror in 

multidither algorithm.
13

 In this case the necessity of signal 
filtration for separation of variations of sensing radiation 
before completion of transient processes was shown. At 
 

present the efficiency of the phase conjugation algorithm 
with account of natural oscillations of reflecting surface of 
acorrector is investigated. Changing the method of force 
application to a mirror, we are supposed to decrease the 
influence of transient processes on a control algorithm.  As 
an illustration, the oscillation of the surface driven by 
smoothly increasing components of the vector F rather than 
by its step components is shown in Fig. 6. The significant 
decrease in the oscillation amplitude is observed. 
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