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The effect of correlation of counter waves on the quality of imaging through a 
randomly–inhomogeneous medium is analyzed in the paper. It is shown that 
correlation of the wave incident on the object and reflected one causes an 
improvement of a point–source image quality as well as an improvement in 
resolution of the image of a two–point object. The effect becomes stronger in the 
case when the transmitting aperture and the aperture of receiving telescope are 
close. 

 
It is known that the spatial and temporal variations 

of the refractive index of a random medium cause the 
distortions of an object image. The image is blurred, its 
contour becomes indistinct, and the information on 
small–scale details of an object is lost. 

Great attention is paid to the problem of imaging 
through a turbulent medium. The works in this field 
conditionally fall into three main classes. First of them 
includes the works devoted to study of the long–exposure 
incoherent imaging of emitting or illuminated objects.1 
Analysis of imaging in these works is based on a 
convolution of the object intensity distribution with the 
long–exposure point spread function (PSF) of the system 
"telescope+random medium". The problem in this case is 
reduced to estimating the long–exposure PSF of the 
system "telescope+random medium". 

Second class integrates studies of short–exposure 
images of sources of incoherent light or incoherently 
illuminated objects. Applied researches in this direction 
are mainly based on Labeyrie method.2,3 

The next class of works can be related to the field of 
coherent imaging,4 where we are concerned with the 
images of objects illuminated with a coherent light. One 
of the directions of such investigations is the coherent 
imaging when the light incident on an object and light, 
received by a telescope, pass along the same path. In this 
case, the direct and return waves correlate due to passage 
through the same inhomogeneities of a random medium.5–

10 The effect of correlation of counter waves on a 
"quality" of coherent imaging through turbulent medium 
is under study in this paper. 

Consider now the object shown in Fig. 1 with 
amplitude reflection coefficient described by the function 
O(ρ', r). Here ρ', and r are the 2D–vectors lying in the 
plane perpendicular to the direction of light propagation. 
This object is illuminated with a coherent light from a 
source located at a distance L from it. Light field 
distribution in the plane of emitting aperture of the 
source is described by the function U

0
(t). The object is 

viewed with a telescope from distance L with the 
amplitude transmission function over its aperture T(ρ). 

 

FIG. 1. Imaging scheme 
 

Let us define the image quality as a functional10  
 

θ(l) = ⌡⌠ d2 ωω2 ⏐N(l, ω)⏐2 / ⌡⌠ d2 ω ⏐N(l, ω)⏐2. (1) 

 

Here N(l, ω) is the scaled spatial spectrum of mean 
intensity of light in the image plane l behind the 
telescope lens  

 

N(l, ω) = S(l, ω) / S(l, 0),  
 

S(l, ω) = ⌡⌠ d2ρ′′< I(l, ρ′′)>exp(iωρ′′) is the spatial spectrum 

of the mean intensity, ω is the spatial frequency. The mean 
intensity < I(l, ρ′′)> in the plane l behind the telescope lens 
is described by the following expression11 
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where G

d
(x, x

0
; ρ, t) and G

b
(x

0
, x; ρ, r) are Green's 

functions for the line–of–sight propagation from the source 
to the object and backward from the object to the telescope, 
respectively; Ft is the focal length of the telescope; 

κ = 2π/λ is the wave number; x
0
 determines the position of 

the source plane on the x' axis, and x determines the object 
plane. 

In what follows we will consider the turbulent 
atmosphere with Kolmogorov spectrum of the refractive 
index fluctuations causing strong intensity fluctuations on 
the propagation path as a random medium.11 The optical 
source is assumed to emit a Gaussian beam with the 
effective radius a and the wave–front curvature radius F. 
For the function T(ρ) we also use the Gaussian model with 
the effective radius at. 

It is known11 that for the strong intensity fluctuations 
we can write 

 
< I(l, ρ′′)> = < I(l, ρ′′)>

1
 + < I(l, ρ′′)>

2
, 

(3)
 

S(l, ω) = S
1
(l, ω) + S

2
(l, ω). 

 
The first term in Eq. (3) describes the mean intensity 

of the beam in the case of no correlation between the 
incident and reflected waves. The second term is due to 
correlation of the counter waves, and it determines specific 
features of images of coherently illuminated objects as 
compared to the images of objects illuminated incoherently. 

The influence of processes described by the second 
term in Eq. (3) on the quality of imaging is more 
convenient to be studied for the case of a point object. The 
spatial spectrum, S

0
(l, ω), of a point object is a constant. 

Inhomogeneous medium and diffraction on the apertures of 
the telescope and the illuminating source play the role of 
high–frequency filters. Therefore the spatial spectrum of the 
object image is obtained from the object spatial spectrum as 
a result of the filtration of its high–frequency components. 

For the point object, we have 
 

O(ρ, r) = 4π/κ2 δ(r) δ(ρ – r), (4) 
 
where δ(r) is the Dirac delta–function. Having substituted 
Eq. (4) into Eq. (2) for the term S

1
(l, ω) in Eq. (3) we obtain 

 

S
1
(l, ω)=const(g2

 + 2p)–1
 exp[ ]–ω2/ω2

0
 (1 + Ω2

tQ
2
 + 2pΩt/Ω) , 

  (5) 
 
 
where ω

0
= 2atκ/l; g2= 1+ Ω2(1 – L/F)2; Q= 1+ L(1/l–1/Ft) ; 

p = 2Ω/(3g); Ω = κa2/L, and Ωt = κa2
t/L are the 

Fresnel numbers of the transmitting aperture ar and of 

the lens of the telescope at, respectively, q = 0.82β–12/5
0

; 

β2
0
 = 0.31C2

e κ
7/6L11/6 is the parameter characterizing the 

turbulent conditions of propagation along the atmospheric 
path, C2

ε is the structure constant of the refractive index  

fluctuations. In the considered case of strong intensity 
fluctuations, the parameter β2

0
 exceeds unit significantly. 

As follows from Eq. (5), the best image of the point 
object is formed in the plane l* behind the telescope lens, 
for which the relation12 

 

Q = 1 + L /l* – L /Ft = 0. (6) 
 

is valid. In optics the relationship (6) is known as the 
formula for a thin lens, and it determines the plane of sharp 
image of the point object. The amplitude of the component 
S

1
(l, ω) is proportional to β–12/5

0
, and the characteristic 

spatial scale of its decrease in the transverse plane is of the 
order of 

 

ω
1
 ∼ ω

0
 (1 + Q2 + 2 p Ωt / Ω)–1/2. 

 

The component S
2
(l, ω) is expressed in the form
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where the following designations are introduced:  
 

A = [1 + p(1 + Ωt / Ω)]–1;  B = 1 + p;  C = 1 + p Ωt / Ω. 

 
It follows from Eq. (7) that S

2
(l, ω) is proportional to 

the quantity β–24/5
0

, and the characteristic scale of its decrease 

ω
2
 is proportional to ω

0
. Thus, although the amplitude of the 

component S
2
 is essentially lower than that of the component 

S
1
 at β2

0
 . 1, the characteristic scale of its decrease far exceeds 

the characteristic scale of the component S
1
 decrease 

(ω
2
/ω

1
 ∼ (1 + Ω2

tQ
2 + 2 p Ωt/Ω)1/2

. 1). 

 

 
 

FIG. 2. Schematic illustration of the terms S
1
 and S

2
 

behavior. 
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The behavior of S
1
 and S

2
 is illustrated schematically in 

Fig. 2. Here N
0
 is the normalized spatial spectrum of the point 

object, Ni
1
 = S

1
(l*, ω)/S

1
(l, 0) and Nf

1
 = S

1
(Ft, ω)/S

1
(l, 0) 

are the spatial spectra of this object image without considering 
the correlation of counter waves in the plane of sharp image 
(l = l*) and in the focal plane of the telescope (l = Ft), 

respectively. Nf
2
 = S

2
 (Ft, ω) / S

1 
(l, 0) is the relative 

contribution of the second component to the spatial spectrum 
of the object image in the focal plane of the telescope.  

As the image size in the plane l* is minimum, the width 
of the spectrum S

1
 in this plane S

1
(l*, ω) exceeds that in the 

focal plane S
1
(Ft, ω). At the same time, it follows from Fig. 2 

that the component S
1
(Ft, ω) contains the information on 

high–frequency portion of the spatial spectrum of the point 
object, filtered by inhomogeneous media in the absence of the 
counter waves correlation. Consequently, the account of S

2
 

must lead to improvement of the object image quality in the 
focus of telescope. 

This fact was tested by calculations. Having used the 
Eqs. (1), (5), (7) we calculate the functional θ

1
(l*), which 

characterizes the point–object image quality in the sharp–
image (conjugated) plane without consideration of the 
counter wave correlation, and the function θ(Ft), which 

characterizes the image quality of the same object in the 
focal plane of the telescope accounting for counter wave 
correlation. Let the parameter M be defined as the ratio of 
the quantity θ(Ft) to the θ

1
(l*). It is clear that M > 1 

corresponds to improvement of the image quality, and 
M < 1 corresponds to worsening of the image quality.  

 

 
 

FIG. 3. Dependence of the quantity M=θ(Ft)/θ
1
(l*) for a 

point object on the Fresnel ratio of the aperture of a source 
of coherent light: Ωt = 0.1 (1); 1 (2); 10 (3); 100 (4). 

 
Figure 3 presents the dependence of M on the Fresnel 

number of the source illuminating the point object with 
coherent light at different Fresnel numbers of the telescope 
lens. The parameter β2

0
 was equal to 50.  

From Fig. 3, it is clear that the improvement of image 
quality according to the criterion (1) takes place when the 
apertures of the coherent source and the telescope are equal 
(Ω = Ωt). In this case, the contribution of the coherent term 

S
2
 is comparable with that of the term S

1
. Thus, the  

correlation of counter waves under conditions of strong 
intensity fluctuations can lead to improvement of image 
quality in the focal plane as compared to that in the 
conjugated plane l*. The difference in apertures (Ω . Ωt or 

Ω n Ωt) does not result in an improvement of the image 

quality. 
This has a good physical explanation first presented in 

Ref. 13 for the mean image intensity. Really, it is clear that 
the long–range correlation14 makes the counter rays 
coherent (correlative) only in the region limited by the size 
of output aperture a of a optical source.  Therefore, a lens 
of a size less than 2a collects not all the coherent rays. Use 
of a telescope with the lens of larger than 2a dimensions 
results in the relative decrease of the coherent component of 
scattered radiation < I(l, ρ′′)>

2
 as compared with the 

increased contribution from the incoherent component 
< I(l, ρ′′)>

1
. 

Now let us examine the effect of correlation of counter 
waves on the resolution of the coherently illuminated 
objects viewed in a turbulent atmosphere. Assume the 
object to be a set of two point scatterers and present the 
function O(ρ, r) in the following form: 

 

O(ρ, r) = (2π/κ2) [δ(r – r
0
) + δ(r + r

0
)] δ(r – r

0
), (8) 

 

where 2r
0
 is the distance between scatterers.  

 

 
 

FIG. 4. Intensity distribution in the image of a two–point 
object at r

0
/ρn = 150,Ω = 10, Ωt = 10, and β2

0
 = 50. 

 
FIG. 5. Intensity distribution in the image of a two–point 
object at r

0
/ρn = 50, Ω = 10, Ωt = 10, and β2

0
 = 50. 
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Using Eqs.(2) and (8) we can obtain the expression for 
the mean intensity distribution in the image of a two–point 
object. Shown in Figs. 4 and 5 are the results of 
calculations using the obtained expression of such an image 
intensity distribution in the conjugated plane and the focal 
plane for different separations between scatterers. The 
distance in the plane transverse to the optical axis of the 
telescope scaled by the quantity l/κat is used as abscissa. 

The dashed curves in Figs. 4 and 5 for the conjugated 
plane and solid curves without peaks for the focal plane in 
the same figures correspond to the images of a two–point 
object being obtained without considering correlation of the 
counter waves. It is seen from the figures that in this case 
the resolution in the image decreases with decreasing 
separation r

0
 until completely unresolved picture. 

Now consider the image of a two–point object when 
the wave incident on the object and the reflected one 
correlate. In this case, as it follows from the results of 
calculations presented in Figs. 4 and 5, the resolution of the 
object is improved (see Fig. 4) and it persists even for such 
separation between points at which the two scatterers 
become unresolved when viewed in the conjugate plane or 
in the case of abscence of the counter waves correlation. 

 

 
 

FIG. 6. Visibility function of a two–point object (Ω = 10, 
Ωt = 10) in the plane of shape image at β2

0
 = 0, in the focal 

plane at β
0
 = 50 with and without regard for correlation of 

counter waves (2 and 3, respectively), and resolution effect 
by Rayleigh criterion. 
 

For quantitative estimation of the improvement in the 
telescope resolution effect due to correlation of counter 
waves we introduce the function of "visibility" by formula 
V = (I

max
 – I

min
) / (I

max
 + I

min
), where I

max
 denotes the  

maximum intensity in the image, and I
min

 denotes the 

minimum intensity at ρ′ = 0. 
Figure 6 demonstrates the visibility function for a 

two–point object corresponding to different imaging 
schemes. The separation range scaled by the parameter ρn 

is shown in abscissa. Parameter ρn is the coherence length 

of the plane wave passed the path of length L in a 
turbulent medium:  
 
ρ

2
n = L / (1.22 κ β12/5

0
) .  

 
It follows from Fig. 6 that the resolution effect increases 
essentially due to the correlation of counter waves if the 
apertures of a source of coherent light and the telescope 
are close in size. 

Thus, the correlation of wave illuminating the object 
and the wave reflected from it can lead to essential 
increase of a coherent image quality and resolution effect 
of a telescope. 
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