
824   Atmos. Oceanic Opt.  /November–December  1994/  Vol. 7,  Nos. 11–12 V.P. Yakubov  
 

0235-6880/94/11–12  824-03  $02.00  © 1994 Institute of Atmospheric Optics 
 

QUASI–PERIODIC FREQUENCY VARIATIONS IN REMOTE SENSING  

OF THE TURBULENCE  
 

V.P. Yakubov 

 

V.V. Kuibyshev Tomsk State University 
Received July 15, 1994 

 
This paper considers two mechanisms of quasi–periodicity in remote sensing of 

the turbulence: modulation of radiation by inhomogeneity waves in a medium and 
interference of elementary waves in the process of the radiation phase front splitting 
by large–scale inhomogeneities. The dominating role of the second mechanism is 
illustrated by the example of sensing of the solar atmosphere. 

 

INTRODUCTION 

 
One effective technique for remote sensing of turbulent 

media is that by which coherent optical or microwave 
radiation has passed once through the examined 
inhomogeneities. In case of well–developed turbulence, the 
energy parameters of transmitted radiation (correlation and 
spectrum) vary monotonically, on the average, in so far as 
the spectrum of the well–developed turbulence is nearly 
Kolmogorov one.1–3 However, a detailed analysis of 
individual realization, e.g., of phase and frequency records, 
reveals the components that deviate from this monotonic 
dependence. For example, quasi–periodic components are 
found that are most clearly manifested in the turbulent 
media with wide spectra of inhomogeneities, such as the 
Earth's atmosphere4 or interplanetary or solar plasma.5 

Experimental data indicate that quasi–periodicity in 
sensing of the turbulent media is quite regular rather than 
stationary in character. Amplitudes of the components 
found, e.g., in frequency records, may be rather high, thus 
affecting the accuracy of optical and radio navigation 
systems. To explain this phenomenon by the existence of 
some periodic waves that modulate the phase fronts in the 
medium is not the only alternative available. Such a 
manifestation may also accompany the interference of the 
partial waves generated in the process of the initial phase 
front splitting by large inhomogeneities. The present paper 
compares these two approaches explaining quasi–periodicity 
of wave frequency and phase in sensing of the turbulence of 
the solar atmosphere. 

 
1. INHOMOGENEITY WAVES IN A TURBULENT 

MEDIUM 

 
In order to account for the existence of inhomogeneity 

waves propagating through turbulent media, we may modify 
the spatial spectrum of the developed turbulence Φ(κ), 
introducing its spatiotemporal spectrum6 

 

F(κ; ω) = Φ(κ) 
δ(ω – kν – ω(k)) + δ(ω – kν + ω(k))

2  , 

 

where ν is the drift velocity of frozen inhomogeneities, and 
the function ω = ω(κ) describes the frequency dispersion of 
waves in the medium. For linear dispersion ω(κ) = |κz|νs 

typical of magnetosonic waves propagating with the velocity 
νs , the energy spectrum of temporal phase fluctuations of a 

sensing wave, calculated by the well–known technique1–3 
in the geometric optics approximation, has the form 
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Here W(0)
ϕ

(ω) is the spectrum in the absence of 

inhomogeneity waves, L is the depth of the turbulent layer, 
and κ = 2π/λ is the wave number. The spectrum of 
frequency fluctuations Ω = dϕ/dt is obtained by simple 
multiplication 
 

W
Ω
(ω) = W

ϕ
(ω) ω2 . 

 

It is seen that neither W
ϕ
(ω) nor W

Ω
(ω) exhibits 

singularities at any frequency. In other words, there is no 
quasi–periodicity in the realization. Such a conclusion 
follows from the fact that the corresponding correlation 
functions have the form 
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where γ
±
 = ν/(ν ± νs), while B(0)

ϕ
(τ) and B(0)

Ω
(τ) are the 

corresponding correlation functions in the absence of waves. 
Neither the spectrum nor the correlation points to quasi–
periodicity. 

We have ω(κ) = Ω
0
 = const for the dispersion in the 

absence of waves, and 
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for the spectral power density of the phase fluctuations 
provided the turbulence occurs at eigenfrequencies.  

For example, the phase correlation acquires the form 
 

B
ϕ
(τ) = B(0)

ϕ
(τ) cos Ω

0
 τ . 

 

 

Oscillations should then be found at the frequency Ω
0
 

in the realization. We now proceed to a verification of this 
conclusion from the available observational data.5 

Quasi–periodic components were identified for 
microwave sensing of the turbulence of the solar 
atmosphere, with their relative contribution reaching 20–
60% and their characteristic period increasing from 12 to 
250 s away from the Sun and following nearly–power law 
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T = 2π/Ω
0
 = a

T
(ρ/R

0
)
α
T , (1) 

 

where a
T
 = 0.15 ± 0.05 s, α

T
 = 2.1 ± 0.2, ρ is the impact 

parameter, and R
0
 is the radius of the solar photosphere.5 

Figure 1 shows the measured values that yielded the above 
dependence (1). Measurements were conducted at λ = 32 cm 
from aboard "Venera–15" and "Venera–16" spacecrafts. 
The characteristic period was retrieved from the records of 
frequency fluctuations using the correlation (empty circles) 
and spectral (filled circles) techniques.  

 

 
 

FIG. 1. Period of microwave frequency fluctuations vs. 
the impact parameter. 

 

Assuming the frequency Ω
0
 to be equal to that of the 

ionic cyclotron oscillations 
 

Ω
0
 = B

–
e/(mc) , 

 

we see that in addition to the electronic charge e and the 

proton mass m, it depends on the magnetic field strength B
–

. It 
is usually assumed7 that the magnetic field strength decreases 
with distance from the Sun, following a quadratic law  

B
–

 ∼ ρ–2. This entails a quadratic increase of the characteristic 
period of frequency variations, T = 2π/Ω

0
 ∼ ρ2 , which agrees 

qualitatively with dependence (1). To check the quantitative 
agreement, we take the magnetic field strength at the distance 
ρ = 10R

0
 from the Sun. According to Ref. 7, we have  

B
–

 = 10–2 G. A close value follows from Ref. 8. Assuming 
plasma ions to be hydrogen nuclei, we find 
F

0
 = Ω

0
/2π = 15 Hz, so that T = 0.066 s. This is two orders 

of magnitude less than the periods shown in Fig. 1. Thus, the 
observed quasi–periodicity cannot be attributed to the above–
considered turbulence; its nature and origin should be sought 
in larger–scale perturbations of the solar atmosphere. Their 
spectrum is rather wide. 

 

2. INTERFERENCE 
 

It is known from the theory of wave propagation that 
quasi–periodic nonstationary perturbations often result from 
wave interference.9 In case of multibeam field, the total 
radiation phase ϕ is represented as 
 

ϕ = ω
0
t – κL – δϕ + ψ , 

 

where ω
0
 is the carrier frequency, kL is the spatial phase run–

on, and δϕ are phase variations due to the small–scale 
turbulence. The component ψ = arg U is related to  

interference of the partial waves with amplitudes Aj and 

frequency shifts Δfj , so that 
 

U = ∑
j

 Aj exp (i2π Δfj t) . 

 

The temporal correlation function for this model is  
 

B(τ, t) = B
ϕ
(τ) + B

ψ
(τ, t) , 

 

where B
ϕ
(τ) is the autocorrelation of the turbulent phase 

fluctuations and  
 

B
ψ 

(τ, t) = 
1
T ⌡⌠

t

t+T

 δψ(t' + τ) δψ(t') dt' 

 

describes the phase variations caused by interference. 
Analogous result is obtained for the frequency 
f = dϕ/d(2πt). When two waves having different 
amplitudes A

1
 and A

2
 and frequency shifts Δf

1
 and Δf

2
 

interfere, for the temporal frequency autocorrelation we 
have  
 

Bf(τ, t = 0) = σ2(1 – β) / (1 + 4 σ2β) , 
 

where 
 

σ2 = Δf2 ν2 / 2(1 – ν2),  β = 2 sin2(2π Δf τ) / (1 – ν2) , 
 

and the values ν = A
1
/A

2
 and Δf = Δf

1
 – Δf

2
 depend on the 

ratio of the amplitudes and the difference between the 
frequencies of the two partial waves. There appears quasi–
periodicity, and its characteristic period T = 1/Δf is 
determined by the difference between the two frequency shifts. 
Provided the initial amplitudes are close to each other (ν ∼ 1), 
the frequency dispersion of quasi–periodicity sharply 
increases.  

Curves 2 and 3 in Fig. 2 show the calculated 
frequency variations for two and three interfering waves 
with Δf

1
 = – 0.0033 Hz, Δf

2
 = 0.0033 Hz, and A

2
/A

1
 = 0.7; 

Δf
1

 = – 0.0033 Hz, Δf
2

 = 0.0033 Hz, Δf
3

 = 0.030 Hz, A
2
/A

1
 = 0.5, 

and A
3
/A

2
 = 0.15. For comparison, curve 1 shows the 

frequency recorded in sensing of the solar atmosphere with the 
impact parameter ρ = 17.4 R

0
 and subsequently averaged over 

a 13s period. A noticeable similarity is found between the two 
records, and the possibility becomes apparent of several 
periods simultaneously. A single period is only observed in the 
case of two waves. 

 

 

 
 

FIG. 2. Temporal frequency variations: 1) "Venera–15" 
experiment; 2) model of two–wave interference; and, 
3) model of three–wave interference. 
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We now proceed to the estimate of the period of 
oscillations using the model of random refraction by large–
scale inhomogeneities with a lens–like effect. The existence of 
such a mechanism was noted in Ref. 10, where it was used to 
explain the saturated fluctuations of the wave intensity in 
microwave sensing of the solar atmosphere. In Ref. 11 it was 
demonstrated that the following approximation may be used to 
estimate small angles of refraction: 
 

ξ = 1.4 ⋅ 10–15 λ2 Ne , 
 

where Ne = N
0
(R

0
/ρ)2 is the radial dependence of the 

electronic plasma number density in the solar atmosphere. 
Here ξ is measured in radians, λ – in meters, and Ne – in m–3. 

The angle of beam deviation ξ due to each individual 
inhomogeneity is of random sign. The relative deviation of the 
two adjacent beams may be estimated as 2ξ. When such 
inhomogeneities move across the sensing beam at the velocity 
ν
L
, the difference between the frequency shifts is estimated as3 

 

Δf = 2 ξ ν
L
 / λ . 

 

Since Δf = 1/T, we have an estimate for T 
 

T = 3.6 ⋅ 1014 (ρ / R
0
)2 / (λ ν

L
 N

0
) . 

 

Accounting for the normalization condition12 
Ne(ρ = 10R

0
) = 1.2⋅1016 m–3, for ν

L
 = 7.8 km/s and 

λ = 0.32 m we have  
 

T = 0.12 (ρ / R
0
)2 . 

 

The corresponding dependence is shown in Fig. 1 by the 
slant straight line.  

Good qualitative and quantitative agreement between 
the experimental (1) and theoretical (2) dependences counts 
in favor of quasi–periodicity of interference origin in 
sensing of the turbulence of the solar atmosphere.  

 
CONCLUSION 

 
The study in the example of the solar atmosphere 

demonstrates that in addition to the wave processes in the  

medium itself, quasi–periodic frequency variations in 
sensing of turbulent media may result from interference of 
waves generated in the process of the initial phase front 
splitting by large–scale inhomogeneities. The appearance of 
such quasi–periodicity is indicative of the phase splitting 
and may be used to study large–scale portion of the 
spectrum of turbulence from frequency and phase data. 
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