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We present a review of the approaches to improving the efficiency of numerical 

techniques used in atmospheric optics. The methods of line–by–line (LBL) calculation 
of the parameters of selective absorption of optical radiation by gases and its 
scattering by spherical particles as well as the LBL methods for solving the transfer 
equation for long– and short–wave radiation in the atmosphere are considered. 
Numerical procedures for increasing the efficiency of these methods and corresponding 
computational algorithms together with assessments of the computation time are given. 

 

INTRODUCTION 
 
The methods of increasing the efficiency of the line–

by–line method for calculating the selective gas 
absorption of optical radiation and algorithms for 
calculating the parameters of its scattering by aerosol 
(spherical) particles as well as LBL methods of solving 
the equations of long– and short–wave radiation transfer 
in the atmosphere, which are the basis of a software 
package, have been developed by the authors of this paper 
during the last decade for ab initio simulation of 
radiative processes in the atmosphere. This software 
package was successfully used in climatic investigations, 
solution of problems on sounding the atmosphere from 
space, and some other problems which require evaluated 
accuracy and detailed consideration of selective gas 
absorption. In some cases, their efficiency was higher then 
of the analogous ones by several orders of magnitude. 
Thus, the computation of solar radiation fields in a 
cloudy plane–stratified atmosphere took 30–40 hours 
with an IBM PC–4861, while it took 100 hrs by 
CYBER–205.2 Some details of these algorithms have 
already been published. However, the review of these 
papers can be useful both for specialists in numerical 
simulation of optical radiation transfer and in related 
sciences. 

 
1. COMPUTATION OF ABSORBING AND 

SCATTERING PROPERTIES OF THE ATMOSPHERE 
 

First, we describe the LBL technique of computation 
the gas absorption coefficient, which allows one to 
increase the computation speed by one to two orders of 
magnitude. 

The monochromatic (volume) coefficient of gas 
absorption K

ν
 at the wavenumber ν is calculated by the 

formula 
 

K
ν
 = ∑

i

 fi(ν, ν
∼
i) , (1.1) 

 

where fi(ν, ν
∼
i) is the profile of the ith spectral line with 

the center at a point ν∼i . The contribution coming from 

far lines can be taken into account as a "continuum" 
using the method described by Drayson.3 Therefore, not 

so distant lines, i.e., |ν – ν∼i| < D ∼ 10 cm–1 are summed  

directly by formula (1.1). The calculations of K
ν
 are 

usually carried out with an uniform or nonuniform 
wavenumber grid sufficiently dense to represent a line 
contour, i.e., with a characteristic step H comparable to 
the line half–width. Hence, in the LBL calculations for 
the real atmosphere, each contour is computed 
approximately 2D/H ∼ 10/0.001 = 104 times (0.001 cm–1 
is the characteristic line width in the upper atmosphere) 
thus requiring long computer time. A nonuniform grid, 
which is more dense at line centers and sparse in its 
wings, allows one to reduce somewhat the number of 
contour calculations. However, in strong bands where the 
lines are spaced at distances comparable with their  
half–widths, it is practically impossible to decrease the 
number of contour calculation points using a single grid. 
The use of single grid results in overexpenditure of 
computer time, since any contour is calculated in 
extremely detailed segments of the grid near the centers 
of the remaining lines. 

The principal feature of the described algorithm is a 
series of grids with doubling steps hi 

 
h

0
 = H,  h

1
 = H⋅2,  h

2
 = h

1
⋅2, ... ,  hl = H⋅2l,  l = 0, 1, ... , L, 

 
ν(l)
j  = ν

start
 + hl j , j = 0, 1, ... , (1.2) 

 
where ν(0)

j  = νj is the most dense grid, ν
start

 is the starting 

wavenumber, and L is the number of the most rough grid. 
Only ten grids (L = 10) are required to extend the step 
from 0.001 to 1 cm–1. Now, the contour of each line is 
calculated independently of the other lines at about 50 
points of this series of grids, as shown in Fig. 1. In other 
words, an optimal set of interpolation nodes is formed for 
each line. It should be noted that summation (1.1) must 
be done individually for each grid ν(l)

j  for the 

corresponding segment of the contour 
 

ϕ∼(l)
j  = ϕ∼(l)

j  + fi(ν
(l)
j , ∼νi) , ϕ

(l)
j+1

 = ϕ(l)
j+1

 + fi(ν
(l)
j+1

, ∼νi) , 

 

ϕ∼
∼(l)
j+2

 = ϕ∼
∼(l)
j+2

 + fi(ν
(l)
j+2

, ∼νi) ,  j = 0, 2, ... , (1.3) 

 

where ϕ∼(l)
j  , ϕ(l)

j  , and ϕ∼
∼(l)

j  are the accumulated contributions 

from the remaining lines. 
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FIG. 1. An illustration of the calculational technique for 
K

ν
 using a series of grids. 

 

At the each second point, we have to consider ϕ∼(l)
j  and 

ϕ∼
∼(l)
j  individually due to "discontinuities" of the contour 

depicted in Fig. 1. After considering all of the lines, a 
recursion procedure is carried out based on simple quadratic 
interpolations, which enable one to obtain the unknown 
coefficient of gas absorption at the nodes of the most 
detailed uniform grid 
 

ϕ∼
∼(l–1)

m  = ϕ∼
∼(l–1)

m  + ϕ∼
∼(l)

m/2
 ,  ϕ∼(l–1)

m  = ϕ∼(l–1)
m  + ϕ∼(l)

m/2
 , 

 

ϕ(l–1)
m+1

 = ϕ(l–1)
m+1

 + 0.375 ϕ∼(l)
m/2

 + 0.75 ϕ(l)
(m/2)+1

 – 0.125 ϕ∼
∼(l)

(m/2)+2
 , 

 

ϕ∼(l–1)
m+2

 = ϕ∼(l–1)
m+2

 + ϕ(l)
(m/2)+1

 ,  ϕ∼
∼(l–1)

m+2
 = ϕ∼

∼(l–1)
m+2

 + ϕ(l)
(m/2)+1

 , (1.4) 
 

ϕ(l–1)
m+3

 = ϕ(l–1)
m+3

 – 0.125 ϕ∼(l)
m/2

 + 0.75 ϕ(l)
(m/2)+1

 + 0.375 ϕ∼
∼(l)

(m/2)+2
 , 

 

ϕ∼(l–1)
m+4

 = ϕ∼(l–1)
m+4

 + ϕ(l)
(m/2)+2

 ,  ϕ∼
∼(l–1)

m+4
 = ϕ∼

∼(l–1)
m+4

 + ϕ∼
∼(l)

(m/2)+2
 , 

 

where m = 0, 4, 8, ... and l = L, L – 1, ..., 1. 
By interrupting this procedure in those spectral 

intervals where in the finest grids the accumulated 
contributions are equal to zero (between widely spaced 
lines), it is also possible to obtain a nonuniform grid, which 
is more efficient for use in the transfer problems solution. 
The interpolation procedure (1.3) is carried out once and, as 
a rule, in a time, which is negligible in comparison with the 
time of the entire computation. It is easy to analyze the 
interpolation errors of the method making advantage of an 

approximate proportionality of the contour to |ν – ∼νi|
–2 

starting from distances of several half–widths from the 
center. It can be shown that these errors (Fig. 2) are 
alternating (that results in their partial compensation) and 
does not exceed 7.8% (in wings). In this case, the errors 
related to the contour amplitude and appearing in 
calculation of contour area are not larger than 1%. Such 
accuracy is sufficient for most of practical computations. It 
can easily be improved by introducing a complementary 
central point in each grid in Eq. (1.2) and coming from 
Eq. (1.4) to the procedure based on the 4th–order 
interpolations. In this case, the error is reduced from 7.8 
down to 0.4%. Finally, the procedure described increases 
the computational speed to 104/50∼100 times, though it 
requires a 2.5 time larger memory of a computer.4 

 
 

FIG. 2. The Lorentz contour (normalized to unity) 
calculated directly (solid line) and using the described 
technique (dashed line) at distances in half–width units. 

 
To completely describe the computational algorithms 

of interaction between the optical radiation at the 
atmosphere, it is useful to consider scattering by aerosol 
particles or cloud drops. Here, the authors use more 
traditional methods. The calculation is accomplished using 
the Deirmendjian algorithms5 based on the Mie series, 
which allow one to obtain precise parameters of scattering 
by spherical homogeneous particles. However, for "large 
particles" (the particle radius exceeds the incident wave 
length by one or two orders of magnitude), the optical 
approximation is used. Such an approach proposed by 
Shifrin6 enables one not only to increase the computational 
speed by some orders of magnitude, but also to resolve the 
known computational problems caused by the need for the 
consideration of diffraction peak in the scattering phase 
function in a rather simple way. 

 
2. SOLUTION OF THE RADIATIVE TRANSFER 

EQUATIONS FOR THE ATMOSPHERE 
 
In this section the peculiarities of the solution of the 

radiative transfer equations in the atmosphere are briefly 
described based on linear interpolation of the 
monochromatic absorption coefficient K

ν
(Z) and other 

values for a vertical path. This method was developed by 
the authors during the last several years; it revealed much 
higher efficiency then the traditional one connected with 
division of the atmosphere into homogeneous layers. First, 
the volume absorption coefficient is calculated at the levels 
Zj (usually in one–kilometer intervals). Between the levels, 

the coefficient is presented in the form 
 

K
ν
(Z) = α

j

ν
 + β

j

ν
 Z ,  1 ≤ j ≤ N , (2.1) 

 
where Zj ≤ Z ≤ Zj +1

 and N is the number of levels. 

The values α
j

ν
 and β

j

ν
 are easily found from the 

solution of the system of two linear equations obtained by 
considering Eq. (1.2) at the levels Zj and Zj +1

. 

Expression (1.2) makes it possible to avoid the numerical 
integration over Z when calculating the optical depths. 
Thus, integrating Eq. (1.2) in an analytical form, we obtain 
an algebraic formula for the optical depth of the layer 
between the levels Zj and Zj +1 

: 

 

τ
ν
(Zj, Zj+1

) = α
j

ν
 (Zj+1

 – Zj) + β
j

ν
 
1
2 (Z

2
j+1

 – Z2
j) . (2.2) 

 
Generalization of Eq. (2.2) for calculating the optical 
thicknesses of any layer, optical paths of photons, etc., 
seems obvious and provides sufficiently rapid computation. 
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Schwarzschild integrals7 (over frequency and space) 
being solutions of a corresponding transfer equation 
neglecting the scattering process are used in the calculation 
of integral characteristics of long–wave radiation transfer 
(fluxes, intensities, and influxes). When making numerical 
integration, some difficulties appear, which are accounted 
for by a wide spread of photon free paths in the atmosphere 
due to selective gas absorption. Thus, the photon free path 
at a frequency within the center of strong line can be 
reduced to several centimetres. As a result, unrealistic 
spatial grids are needed for integration. This problem is 
solved using the identity 
 

⌡⌠
H

...

 dZ B
Δν

 [T(Z)] ϕ(Z) ≡ B
Δν

 [T(H)] ⌡⌠
H

...

 ϕ(Z) dZ + 

+ ⌡⌠
H

...

 {B
Δν

 [T(Z)] – B
Δν

 [T(H)]} ϕ(Z) dZ , (2.3) 

 
where B

Δν
(T) is the Planck function which is frequency–

independent at small intervals Δν (Δν = 1–10 cm–1); T is 
the temperature dependent on altitude Z; H is the height of 
a calculation point; and, ϕ(Z) is the result of integration 
over frequency in the interval Δν of the corresponding 
functions K

ν
 and τ

ν 
, entering into the Schwarzschild 

integral. The function ϕ is nonzero only in the region of 
several photon free paths around the calculation point. 

The first integral in the right–hand side of Eq. (2.3) 
is taken analytically and the second one is taken 
numerically on spatial grids with the 10–100 m step 
determined by the characteristic scale associated with 
temperature stratification of the atmosphere. For strong 
absorption, where the photon free path becomes shorter 
then 1–10 m, the second integral can be neglected, since 
the product in the integrand is close to zero. This method is 
described at length in Ref. 8. 

Consider now a universal technique based on the 
combination of line–by–line and the Monte Carlo methods. 
It allows us to strictly account for selective gas absorption 
in composite scattering media, such as cloudy and dusty 
atmosphere. The consideration of selectivity drastically 
complicates the problem that forces us to make 
computations with the spectral resolution of 0.001 cm–1 (see 
previous Section), often over the entire short–wave range of 
the order of 104 cm–1 (see the example from Ref. 2, which 
has been mentioned in the Introduction). This calls for 
consideration of 104/10–3 = 107 monochromatic transfer 
equations. The initial is the expression for the optical path 
u
ν
(M*) of a simulated photon at a point M* of its 

trajectory which is a broken line with vertices at scattering 
points at altitudes H

1 
, H

2 
, H

3 
, ... and cosines cosα

1 
, 

cosα
2 
, cosα

3 
, ... of zenith angles of the broken–line 

segments 
 
u
ν
(M*) = (τ

ν
(H

2
) – τ

ν
(H

1
)) / cosα

1
 + (τ

ν
(H

3
) – 

– τ
ν
(H

2
)) / cosα

2
 + ... , (2.4) 

 
where H

1
 is the altitude of the upper level of the 

atmosphere; τ
ν
(H

1
) = 0; τ

ν
(H

2
), τ

ν
(H

3
), τ

ν
(H

4
), ... are the  

optical depths of scattering points obtained using the "rapid" 
relations of the Eq. (2.2) type. The selective gas absorption is 
taken into account with the help of the photon "weight" 
 
Q

ν
(M*) = exp (– u

ν
(M*)) . (2.5) 

 
The subsequent procedures for calculations by the Monte 
Carlo method are standard and depend on the type of a 
problem.9 Let us point out the efficiency of combining a 
spatial photon grope with frequency photon grope (this was 
proposed by A.N. Rublev) which enables one to obtain 
integral characteristics in wide spectral ranges.10 Using the 
aforementioned technique, the consideration of selective gas 
absorption could be introduced into the Monte Carlo 
method without increasing computer time, since due to high 
efficiency of LBL calculations, the total computational time 
does not increase substantially. 

 
CONCLUSION 

 
The characteristic time of complete computation of 

radiation field in the atmosphere or simulation of the 
experiment for its sounding (including that from space) over 
the entire long or short–wave range with the accuracy 
accounted for by uncertainty of contemporary atmospheric 
optical models is several tens of hours with IBM PC–486. 
The technique was used in climatic problems for studying 
the radiation forcing and obtaining the benchmark 
calculations of solar and thermal radiative fluxes serving to 
test radiation units of climatic models. The technique also 
has the potential for developing the programs for processing 
the data of spaceborne experiments. It is already used for 
the orbital IR–spectrometer ISTOK–1 (project PRIRODA, 
from the orbiting station "Mir" in 1995), in space research 
of the Earth's radiative budget, etc.11 
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