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Algorithms for numerical simulation of stochastic cumulus cloud fields are 
developed for solving some problems of atmospheric optics. A new method is proposed 
to simulate broken clouds for spectral models of uniform Gaussian fields. 

 
Studies in the fields of atmospheric general 

circulation, climate, and meteorology as well as a large 
number of applied problems of atmospheric optics call for 
the development of imitational models of stochastic cloud 
fields. Broken clouds are the most difficult object to 
simulate. In this regard methods of numerical simulation 
of random processes and fields seem to be most promising 
for simulation of the stochastic geometry and inner 
structure of broken clouds.  

In the present paper, we develop and investigate so–
called Gaussian models of broken clouds and use them to 
study solar radiative transfer in the atmosphere by the 
Monte Carlo method. In addition to advantages in 
common with some other existing geometric models of 
broken clouds (see, e.g., Refs. 1 and 2 as well as reviews 
in Refs. 3 and 4), Gaussian models have their own 
advantages, above all, due to efficient numerical 
algorithms, fast adjustment of model to the basic cloud 
parameters, and a great variety of reproducible geometric 
shapes. 

In this paper, the Gaussian models are compared 
with cumulus cloud model based on the approximation of 
clouds by truncated convex paraboloids. Optical 
characteristics calculated for different cloud models are 
presented. Results of computational experiment are 
compared with asymptotic results obtained in Ref. 5 for 
the probability of radiation transmission through a 
stochastic medium. 

 
1. FORMULATION OF THE PROBLEM 

 
To describe the process of radiative transfer, the 

integral equation of the second kind with the generalized 
kernel6  
 

ϕ(κ) = ⌡⌠
X

 K(κ′,κ) ϕ(κ′) d κ′ + f(κ) , (1) 

K(κ′,κ)
 

= 
β(r′) g(μ, r′) exp ( – τ(r′, r)) σ( r)

2 π C r – r′C2 σ(r′)
 δ( )ω – 

r – r′
C r – r′C , 

 

is used, where ϕ(κ) is the collision density, ϕ(κ) = σ(r)Φ(κ); 
Φ(κ) = Φ(r, ω) is the radiant flux density (intensity) at the 
point r in the direction ω; κ = (r, ω) and κ′ = (r′, ω′) are 
the points in the phase space; X = {r ∈ R ⊂ R3, 
ω = (a, b, c), a2 + b2 + c2 = 1}; μ = <ω′, r – r′>/Cr – r′C is 
the cosine of scattering angle; g(μ, r) is the scattering phase 

function, ⌡⌠
–1

1

 g(μ, r)dμ = 1; τ(r′, r) = ⌡⌠
0

l

 σ(r(t)) dt is the  

optical depth of the segment [r′, r], r(t) = r′ + t(r – r′)/l, 
l = Cr′ – rC; σ(r) = α(r) + β(r) is the extinction coefficient; 
α(r) is the absorption coefficient; β(r) is the scattering 
coefficient; f(κ) is the source density function. 

To calculate functionals of the solution of the transfer 
equation, the characteristics of a medium α(r), β(r), and 
g(μ, r) as well as those of a source f(κ) must be known. 
General methods and algorithms for statistical simulation of 
radiative transfer are well–known from a large body of 
literature (see, e.g., Refs. 6 and 7).  

The process of optical radiative transfer in a cloud 
layer is described by a system of single–parameter 
uncoupled equations (1), with the parameter λ ∈ [Λ1, Λ2] 

representing the wavelength. 
The region R is taken to be the plane layer 

 

R = { r = ( x, y, z) ;  H1 ≤ z ≤ H2} , 
 

and the source is considered as the plane–parallel flux in the 
direction ω0 
 

fλ(κ) = S0(λ) δ ( z – H2) δ (ω –ω0) , 

ω0 = ( a0 , b0 , c0 ) ,  c0 = – cos θ0 < 0 , 
 

where S0(λ) is the spectral distribution of incident radiation 

and θ0 is the angle between the vertical axis OZ and the 

incident rays. 
As is well known, selective absorption by atmospheric 

gases is of importance for optical radiative transfer in some 
sections of the spectrum along with Rayleigh and aerosol 
extinction, it cannot be described by the linear radiative 
transfer theory and requires the use of the transmission 
function PΔ λ(L) (see, e.g., Refs. 6 and 7). The transmission 

function has the meaning of the probability of photon 
"survival" on the path L. In what follows the transmission 
function PΔ λ(L) is completely determined by the effective 

(reduced) mass of absorber on the path L. The effective 
absorber mass is defined as 
 

m( L) = ⌡⌠
L

 ρ( r) [ p( r)/ p0]
γ d l , 

 

where ρ(r) is the absorber density at the point r; p(r) and 
p0 are the air pressures at the point r and at the surface, 

respectively; 0 ≤ γ ≤ 1. 
A notable feature of the problem is the stochastic and 

not deterministic structure of the medium. That is, the  
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functions α(r), β(r), and g(μ, r) are realization of random 
fields, and their simulation is the main purpose in the 
case considered. Stochasticity of the medium makes the 
Monte Carlo method the only one suitable to solve the 
problem. 
 

2. GEOMETRIC MODELS OF CUMULUS CLOUDS  
AND SIMULATION ALGORITHMS 

 
2.1. Gaussian models 

 
It was hypothesized in Ref. 9 that cumulus clouds 

can be described using a stationary Gaussian process. This 
hypothesis provided a basis for construction of the 
theoretical–experimental model of statistical structure of 
cumulus clouds (see Refs. 10 and 11, Chap. 3). The 
numerical model of cloud structure based on this 
hypothesis was first constructed in Ref. 12 for statistical 
simulation of optical radiative transfer. The Gaussian 
models were further developed and studied in Ref. 13. 

2.1.1. Description of models. Let us assume that the 
cloudiness is bounded at its bottom by the plane z = H0 

(the cloud lower boundary determined by the 
condensation level varies only slightly in space), while 
the cloud upper boundary z = ω(x, y) is defined by the 
formula (model G1) 
 

ω( x, y) = H0 + max (σ [υ( x, y) – d], 0) , (2) 
 

where d ∈ (–∞, +∞), σ > 0, υ(x, y) is the uniform 
Gaussian random field with zero mean, unit variance, and 
correlation function K(x, y). The absolute cloud–cover 
index n0 is defined as 
 

n0 = 
1 – Φ( d) , (3) 

 

where Φ is the function of the standard normal 
distribution. 

A feature of model (2) is that for d ≤ 0 (n0 ≥ 0.5) 

cloud configuration matches the structure of stratus 
clouds with gaps. For this reason the model G2 
 

ω( x, y) = H0 + max (σ [ |υ( x, y) | – d], 0) , d ≥ 0. (4) 
 

was proposed for modeling cumulus clouds in addition to 
model (2). In this case 
 

n0 = 2 (1 – Φ( d) ) . (5) 
 

In addition to the cloud–cover index n0, we introduce the 

mean cloud amount m0 per unit area and the mean cloud 

thickness h0. According to formula (45.51) from Ref. 14 

we have 
 

m0 = (2π)–3/2 d ( k20 k02 – k2
11)

1/2 exp ( – d2 / 2) , (6) 

where d >
 
0 for model (2), and 

 

m0 = 2 (2π)–3/2 d ( k20 k02 – k2
11)

1/2 exp ( – d2 / 2) (7) 
 

for model (4). Here  

ki j = – 
∂ K ( x, y)
∂ x i d y j

 x = y = 0

. 

 
The Gaussian cloud models (2) and (4) are uniquely 

determined by the values of d and σ and the correlation 
function K(x, y). Fitting these parameters appropriately, 
one easily adjusts the model to a required cloud–cover 
index and mean vertical and horizontal cloud extent. This 
allows the models (2) and (4) to be used for simulation of 
different structure of cumulus and wave clouds (Fig. 1). 
Moreover, uniform random fields can be used to construct 
models for stratified cloudiness with stochastic upper and 
lower boundaries. 

2.1.2. Numerical simulation algorithms. Numerical 
construction of the stochastic structure of broken clouds 
for models (2) and (4) reduces to modeling of a uniform 
Gaussian field υ(x, y) with a given correlation function. 
We modeled using the method of spectrum 
randomization15 or, more precisely, its modification for 
isotropic fields (see Refs. 16 and 17), for it is reasonable 
to consider first the isotropic cloudiness case, which is 
easily extended to nonisotropic structures by scaling 
along one of the coordinate axes. 

For isotropic case k20 = k02 and k11 = 0, and 

formulas (6) and (7) become respectively 
 
m0 = (2π)–3/2 d k02 exp ( – d 2 / 2) , d ≥ 0 , (8) 
 

m0 = 2 (2π)–3/2 d k02 exp ( – d 2 / 2) . (9) 
 

The spectral measure of isotropic field in the plane 
possesses the circular symmetry, and the correlation 
function can be represented as 

 

K( x, y) = B( r) = ⌡⌠
0

∞

 J0(ρ r) μ(dρ) , (10) 

 

where r2 = x2 + y2; J0 is the Bessel function of the first 

kind; μ(dρ) is the radial spectral measure on [0, ∞). (The 
table of spectral measures and corresponding correlation 
functions for isotropic fields are given in Ref. 18.) In this 
case  
 

k02 = 2–1 ⌡⌠
0

∞

 ρ2 μ(dρ) . 

 

Below we discuss the algorithms for numerical 
simulation of uniform Gaussian isotropic fields in a plane 
proposed in Refs. 16 and 17. 

Suppose 0 = R0 < R1 < ... < RN – 1 < RN = ∞. For the 

approximate model of the Gaussian field υ(x, y) with 
correlation function (10) we use 
 

υ*( x, y) = ∑
n=1

N
 cn M –1/2

n  ∑
m=1

Mn
  (– 2 ln αnm)1/2 × 

 

× cos [ x ρn cos ωnm + y ρn sin ωnm) + 2 π βn m ] , (11) 
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FIG. 1. Illustrative realization of Gaussian cloud models (cloud base configuration). 
 

Where c2
n = 

⌡⌠
Rn–1

Rn

 μ(dρ); ωn m = π (m – γn m)/Mn;  

ρn are the random variables distributed over [Rn – 1, Rn) 

with measure μ(dρ); αnm, βnm, and γnm are independent 

random variables distributed uniformly over [0, 1]. 
Modeling algorithm calculates the arrays  

 

A( n, m) = cn(–2(ln αnm)/Mn)
1/2,   D( n, m) = 2 π βnm,  

 

B( n, m) = ρncos ωnm,   C( n, m) = ρn sin ωnm, 
 

while the magnitude of the field at a desired point (x, y) is 
obtained from the formula 
 

υ*( x, y)= ∑
n=1

N
  ∑

m=1

Mn
  A( n, m) cos [ B( n, m) x + 

 

+ C( n, m) y + D( n, m)] . 
 

In model (11) the spectral space is partitioned into 
rings, and each ring is partitioned into equal segments. The 
correlation function for model (11) is given by Eq. (10), 

and when ∑
n=1

N
 Mn → ∞ so that max

n≤N
(c2

n/Mn) → ∞, the field 

ω*(x, y) is assymptotically Gaussian. 
The other variants of the spectral model are possible. 

In particular, by the following substitutions in Eq. (11) 
(separately or in combinations): 1) ρn = ρnm, 2) γnm = γn,  
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and 3) γnm = γ, where ρnm, γn, and γ are independent random 

variables with pertinent distributions. The first replacement 
may be particularly useful when n = N. 

Model (11) is algorithmically simpler but less flexible, 
where cn = N–1/2, and ρn are independent and distributed 

over the entire semiaxis [0, ∞) with measure μ(dρ). 
Computer realization of this algorithm is presented in 
Ref. 17. 

Choice of simulation algorithm and its parameter 
values depends on our desire to translate more or less fully 
relevant sections of the spectrum and affects the character 
of υ*(x, y) realization. 

For computations we chose the simplest correlation 
function for isotropic field 
 

K( x, y) = J0( ρ (x2 + y2)1/2 ) , (12) 
 

and modeled approximately the Gaussian field using the 
formula  
 

υ*( x, y) = M –1/2 ∑
i= 1

M
 (– 2 ln αi)

1/2 × 

 

× cos [ x ρ cos ωi
 + y ρ sin ωi) + 2 π βi] , (13) 

 

where ωi = π(i + α′)/M (α′, αi, and βi are the random 

variables uniformly distributed over [0, 1]). The computer 
program calculates the arrays 
 

A(i) = (–2( ln αi)/ M)1/2,  B( i) = ρ cos ωi, 

C( i) = ρ sin ωi,  D( i) = 2 π βi, 
 

and the field magnitude at a desired point (x, y) is obtained 
by the formula 
 

υ*( x, y) = ∑
i= 1

M
 A( i) cos [ B( i) x + C( i) y + D( i)] . 

 

Formulas (8) and (9) for correlation function (12) 
yield, respectively 
 

m0 = 2–1 (2π)–3/2 d ρ2 exp ( – d 2 / 2) , d > 0 (14) 

 

m0

 
= (2π)–3/2 d ρ2 exp ( – d 2 / 2) . (15) 

 

2.1.3. Adjustment of models. The mean cloud 
thickness h0 and the parameters of model (4) for correlation 

function (12) are related as 
 

h0 = σ ⌡⌠
d

+∞

 ( h – d) p( h) d h / ⌡⌠
d

+∞

 p( h) d h, (16) 

 

where h > 0 and p(h) = 2(2π/3)–1/2(h2 – 1 + e–h2
) exp(–h2/2) 

is the density function of magnitudes of local maxima of 
Gaussian field with correlation function (12) (see 
Ref. 19). 

Comment. Expediency of the use of the density 
function of isotropic Gaussian field local maxima for 
mean cloud thickness computation in the case of 
correlation function defined by Eq. (12) was justified by 
numerical experiment. The use of Eq. (16) for arbitrary 
correlation function may be unjustified (we note in this 
regard that the authors of Ref. 20 inaccurately reported 
the material borrowed from Ref. 13). 

Now the algorithm for specifying the parameters of 
model (4) and (12) starting from the given cloud 
characteristics n0, h0, and m0 is as follows. First, we find 

d from Eq. (5), then calculate σ using Eq. (16). Finally, 
knowing m0, we determine ρ from Eq. (15). The 

model (2) and (12) is adjusted in the same way. 
We note that familiar properties of random fields can be 

used to study various characteristics of models (2) and (4). 
For instance, the formula for calculating the mean length of 
the cloud base contour can be derived from the results of 
Ref. 14, while the formula for the mean cloud amount per unit 
area – from Ref. 21 (see p. 182). 

2.1.4. On the choice of corelation function. As has 
already been noted, test calculations were made for cloud 
models based on the uniform Gaussian isotropic fields 
with simplest corelation function (12). However, some 
numerical experiments call for more complex models, so 
adjusted that to fit the real cloud field configurations of 
different types. We now describe one possible method of 
choosing the correlation function K(x, y) in models (2) 
and (4) using observations. 

Let us suppose that we have cloud field images in a 
plane that can be interpreted as uniform random indicator 
fields ε(x, y), with ε(x, y) = 1 indicating the presence of 
a cloud at the point (x, y) and ε(x, y) = 0 indicating that 
the point (x, y) is located in the gap between clouds. For 
better correspondence between model cloud field 
configurations and configurations of really observed fields 
ε(x, y), the correlation function K(x, y) for model (2) 
should be taken as follows: 
 

K( x, y) = R–1(B( x, y) ) , (17) 
 

where B(x, y) is the covariance function calculated using 
ε(x, y), B(x, y) ≈ Mε(0, 0)ε(x, y), and the function R is 
given by the formula 
 

R(ρ) = ⌡⌠   ⌡⌠ 

–$ 

+∞

u(ξ) u(η) ϕρ(ξ,η) dξ dη , (18) 

 

ϕρ(ξ,η) =
⎣
⎡

 

 

2π 1 – ρ2 exp ⎝⎛ ⎠⎞
ξ2 +η2 – 2 ρ ξ η

2(1 – ρ2) ⎦
⎤

 

 –1

, 

 

u(x) = {1, for x ≥ d,
0, for x < d.  

 

(Recall that Φ denotes the function of standard normal 
distribution.) This procedure for calculating the correlation 
function K(x, y) corresponds to the well–known method of 
inverse distribution function used in statistical simulation (see 
Refs. 22 and 23). Note that at d = 0 and n0 = 0.5 Eq. (18) 

yields R(ρ) = 1/4 + (2π)–1arcsin ρ. 
For model (4) we also use Eqs. (17) and (18) with 
 

u(x) = {1, for | x| ≥ d,
0, for | x| < d.  

 
2.2. Paraboloid cloud model (model P) 

 
An alternative geometric description of cumulus 

cloudiness is based on the fact that real cumulus clouds 
are typically shaped as truncated convex paraboloids.24,25 

Cloud base centers (Ai, Bi) are simulated uniformly 

over [OX]×[OX]. The distribution of cumulus cloud 
diameters is approximated by lognormal or beta  
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distribution.26 Cloud base radii Ri are simulated with the 

density function11 

 

p( R) = {  9.66329 R(1 – R/1.875)4.35, R ≤ 1.875 km,
0, R > 1.875 km.  (19) 

 

Modeling formula for beta distribution can be found in 
Ref. 22. In the case considered it is of the form 
 

R = 1.875 {1 – (α1α2)
[α3/5.35 + (1 – α3)/6.35]

 }, 
 

where α1 and α2 are uniformly distributed on [0, 1]. Cloud 

thicknesses Hi are chosen as24 

Hi =
 
1.91 Ri( Ri/1.875)– 0.031 . (20) 

The point (x,
 
y, z) is within the cloud when for some 

i ∈ {1, 2, ..., m} (with m being the number of clouds 
contained in the area X 2) we have  
 

H0 < z < Hi – Ci[(x – Ai)
2 + (y – Bi)

2] + H0, Ci = Hi/R2
i, 

 

where H0 is the height of the lower boundary of cloudiness. 

Simulation admits paraboloid overlapping, and base 
centers are simulated with the help of the Poisson point 
process on a plane with intensity λ (i.e., the probability 
that just m points find themselves within the area S is 
exp(–λ S)(λ S)m/m!). In case of constant base radii 
(Ri = R0), the cloud–cover index is given by the 

expression2 
 

n0 =
 
1 – exp (– λπ R2

0) . 

 
When the radii are distributed at random with the probability 
density p(R), for the cloud–cover index we have27 

 

n0 = 1 – exp (– λπ < R2>) ,  < R2> = ⌡⌠
0

Rmax

 r 2 p( r) d r. 

 

(For Eq. (19) we have <R2> = 0.3437 km2.) 
Thus the model P is determined by the cloud–cover 

index n0, relations (19) and (20), and the parameter X. 

The main shortcoming of paraboloid models in comparison 
with Gaussian ones is that they require greater computer 
time for larger n0 and X. 

 
2.3. Additional comments on models of broken cloudiness 

 
It seems promising to simulate broken cloudiness with 

the help of models using nonlinear transformations of Gaussian 
random fields in space. Conceivably this approach will be 
more adequate for simulating cloud field geometry; however, 
these models are combersome and call for additional profound 
mathematical investigation. An interesting approach to 
simulation of cumulus clouds suggested in Ref. 20 should be 
mentioned here, which is based on the combination of 
paraboloid and Gaussian models. However, the problem with 
this approach is the model adjustment (e.g., to a cloud 
thickness and, particularly, to an absolute cloud–cover index). 
Finally, the problem of reproducing cloud fractal 
dimensionality touched on in Ref. 20, can easily be solved for 
Gaussian models. 

 

3. EVALUATION OF RADIATIVE CHARACTERISTICS 
OF CUMULUS CLOUDS BY THE MONTE CARLO 

METHOD 
 

3.1. Radiative characteristics of cumulus clouds 
computed over the visible wavelength range 

0.4 ≤ λ ≤ 0.72 μm 
 

Scattering and absorption in the cloudless 
atmosphere were neglected in computations. Clouds were 
assumed to be a scattering medium with σ = 30 km–1. 
The scattering phase function was borrowed from Ref. 11, 
Chap. 4. Photon trajectories were simulated by the 
method of maximum cross section. Cumulus clouds were 
modeled using model (4) and (12) with the parameters: 
the angle between the vertical axis and incident beam ψ0; 

θ0 = 180° – ψ0; the absolute cloud–cover index n0; the 

mean cloud thickness h0; the characteristic diameter of 

cloud base d0 

 
π(d0/2)2 = n0/m0. 

 
The following radiative characteristics were calculated: 
the albedo of cloud system A, the fraction of the scattered 
transmitted radiation T, and the direct solar radiation 
transmitted through the clouds S, where A + T + S = 1. 
The uniform Gaussian field with correlation function (12) 
was simulated approximately using formula (13) for 
M = 10 (further increase of M scarcely affects the 
results). 

The results of calculations are presented in Table I 
and shown in Figs. 2 and 3. Figure 2 illustrates the 
dependence of A, T, and S on θ0 for n0 = 0.5, 

h0 = 0.5 km, and d0 = 0.7 km. 

 
TABLE I. Radiative characteristics for the model G2 with 

different parameters θ0, h0 , and d0. 

 

θ0, deg h0, km d0, km n0 A, % T, %  S, % T/ A

 
45 

 
1 

 
1 

0.3 
0.5 
0.7 
0.9 

18 
27 
37 
47 

24 
38 
47 
51 

58 
35 
16 
 2 

1.34 
1.40 
1.27 
1.09 

 
60 

 
0.5 

 
0.25 

0.1 
0.3 
0.5 
0.7 
0.9 

8 
19 
27 
33 
42 

22 
48 
62 
65 
58 

70 
33 
11 
2 
0 

2.75 
2.53 
2.30 
1.97 
1.38 

 
Note that for n0 ≤ 0.7 the ratio T/A remains 

practically unchanged (see upper rows of Table I). This 
fact shows that radiation fields of individual clouds are 
practically noninteracting. As the cloud–cover index 
increases, the ratio T/A decreases. The effect is stronger 
for higher ratio h0/d0 and at larger θ0 (see lower rows of 

Table I). 
Figure 3 depicts the dependence of A, T, and S on 

cloud horizontal size at θ0 = 45° for n0 = 0.5 and 

h0 = 0.5 km. As d0 increases, the fraction of direct 

radiation increases, the scattered transmitted radiation 
decreases, and the albedo slightly decreases. 
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FIG. 2. The dependence of albedo (A), fraction of the 
scattered transmitted radiation (T), and direct radiation 
transmitted through the clouds (S) on the angle of incidence 
of solar rays (θ0 is the angle between the outward normal to 

the atmospheric surface and the direction toward the source, 
n0 = 0.5, h0 = 0.5 km, and d0 = 0.7 km) 

 

 
 

FIG. 3. The dependence of albedo (A), fraction of the 
scattered transmitted radiation (T), and direct radiation 
transmitted through the clouds (S) on characteristic cloud 
base diameter (θ0 = 45°, n0= 0.5, and h0 = 0.5 km). 
 

Table II summarizes the results computed for models 
G1, G2, and P for n0 = 0.2, h0 = 1 km, and d0 = 1 km. 

 
TABLE II. Radiative characteristics for three cloud 

models. 
 

 Characteristics, % 

θ, deg A T S 
 Model 

 G1 G2 P G1 G2 P G1 G2 P 

0 5 6 8 14 12 12 81 82 80 
20 6 6 8 14 14 11 80 80 81 
40 10 12 12 18 17 12 72 71 76 
60 17 18 15 23 18 15 60 64 70 
80 47 45 48 27 22 20 26 33 32 

 
3.2. Comparison of simulation results with  

asymptotic results of Mikhailov 
 
For model G1 and vertical incident radiation it was 

proposed in Ref. 28 to use the asymptotic results from 
Ref. 5 to estimate the solar intensity transmitted through 

the clouds. Using model G1 described by Eqs. (2) and (12) 

and asymptotic function from Ref. 5, we calculated the  

probabilities of photon transmission through the cloudiness for 
the model problem with the scattering phase function in the 
transport approximation, mean cosine of the scattering angle of 
0.9, and single scattering albedo of 0.7 (σ=30 km–1). For 
n0 ≥ 0.5, a good agreement between the results was obtained. 
 

TABLE III. Probabilities of photon transmission through 
the clouds (model G1).  
 

n0 Mτ (Dτ)1/2 Transmission probability, %

   1 2 
3 
4 
5 
6 
7 
8 
9 

4.33 
5.38 
6.50 
7.71 
9.07 

10.67 
12.77 

9.20 
9.37 
9.52 
9.58 
9.53 
9.32 
8.79 

88 
71 
57 
46 
37 
27 
17 

75 
66 
58 
49 
39 
30 
17 

Note: Here
 
n0 is the cloud–cover index, Mτ is the 

mean optical thickness of the layer, Dτ is the variance of 
optical thickness, columns 1 and 2 list the asymptotic 
results borrowed from Ref. 5 and the results of simulation 
using formulas (2) and (12). 

 
3.3. Simulation of radiative transfer in the  

near–IR spectral range 
 

Cloud absorptance in the near–IR range of solar 

spectrum is primarily determined by water vapor and water 
content. The model G1 was tested for a cloud layer of 1 km 

thickness (with parameters n0 = 0.4, h0 = 0.5 km, d0 = 0.7 km, 

water content in clouds ρw = 0.3 g/m3, and absolute humidity 

inside clouds 7.5 g/m3 and outside clouds 5 g/m3) in the 

wavelength range λ ∈ (1.66 μm and 2.08 μm). The scattering 

phase function was borrowed from Ref. 11 (see p. 47). The 

transmission function was calculated using the formula 

 

P( mυ, mw )
 
= P( mυ) exp (– αw mw) , 

where αw =
 
61.05 cm2/g, while the values of P(mυ) can be 

found in Ref. 11 (see p. 71). Table IV presents the 

dependence of the cloud layer albedo and absorption on the 
angle θ0 (with a scattering coefficient of 30 km–1). Photon 

trajectories were simulated by the method of maximum cross 

section, while the effective absorber mass was calculated by 

dividing each trajectory into segments 50 m long. 

 
TABLE IV. Cloud layer albedo A and absorptance Ab 
within the water vapor absorption band Ω.

 
 

 αw, ñm2/g 

θ0,deg 61.05* 0** 

 A, % Ab, % A, % Ab, % 
0 

20 
40 
60 
80 

3 
4 
6 

11 
22 

41 
43 
49 
55 
60 

6 
7 

12 
19 
36 

34 
35 
37 
40 
45 

* with regard for absorption by water vapor 
** without regard 
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