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This paper presents a modification of the method earlier proposed by the author 

for calculating the set of relaxation parameters describing, in the impact 
approximation, the shape of a spectrum. The modification proposed in this paper 
makes the method easier for computations and widens its applicability limits. To 
illustrate the calculational efficiency of the modification, the data of calculations of 
self–broadening for some rotational doublets of ammonia are presented. 

 
1. INTRODUCTION 

 
Collisional, or pressure, line broadening is the most 

essential mechanism for forming spectral line profiles, as 
well as the whole spectrum in a wide range of 
thermodynamic conditions. A central part of spectral lines is 
usually described using the impact approximation of the 
theory, which is valid for not too dense gaseous media. In 
this approximation the shape of a spectrum is characterized 
by set of frequency–independent parameters that are the 
reduced matrix elements of the relaxation superoperator1) 
acting in the spectral line space representation.1 In 
approximation of classical trajectories the superoperator has 
a form  

Λ
∧

 = – i ηb ⌡⌠ dν P(ν) Trb {[1 – U
∧

(∞, –∞)] ρb}, (1) 

 

where ηb is the buffer gas density, this gas acts as a 

thermostat for radiation absorbing molecules, ⌡⌠ dν P(ν) is 

the averaging operator over classical collision of parameters, 
the trace Trb is taken over all states of the thermostat 
particle excluding the translation ones, ρb is the density 

matrix of the particle, and U
∧

 (∞,–∞) is the scattering 
superoperator in Liouville space of the light–absorbing 
molecule and the thermostat particle, which is the solution 
of the evolution equation2,3

  

∂ U
∧

 (t, t0)

∂ t  = – i L
∧

c(t) U
∧

(t, t0), U
∧

(t0, t0) = 1
∧

, (2) 

 

at t → +∞ and t0 → –∞. Here L
∧

c(t) is the Liouville 

interaction superoperator, or Liouvillian, written in the 
interaction representation. In the case of 2K–pole radiation 
of π – parity (for the electric dipole radiation the indices 
are K = 1 and π = –1) the reduced matrix element 
 

______________________________________ 
1) The superoperators are defined in the Hilbert space 
generated by ordinary operators which act in a Hilbert 
space of wave vectors, with the scalar product 
(A,B) = Tr {A+B}. Below they are marked by caret∧. 

of the relaxation superoperator Λ
∧

 is defined by the formula 
given in Refs. 16 and 22) 
 

Λ
∧ (πK)

i'f', if = ∑
(mi mf)

 
(jf' K mf' Q ⏐ ji' mi') (jf K mf Q ⏐ ji mi)

[(2 ji' + 1) (2 ji + 1)]1/2  , (3) 

 

nαi' ji' mi' (αf' jf' mf')
+ ⏐Λ

∧

⏐ αi ji mi (αf jf mf)
+.. 

 

Here the subscripts i, i′ and f, f ′ mark the initial final 
states of the transitions, respectively; j is the quantum 
number of the total angular momentum, m is its projection 
on an axis fixed in space; α is a concise designation for all 

the rest quantum numbers; the quantities of (αβ γδ εφ ) 

type are the Clebsch–Gordon coefficients. Enclosing the 
summing indices in Eq. (3) in parentheses means that the 
summation is performed over all enclosed indices, both 
marked and unmarked by a prime. 

The diagonal matrix elements of the superoperator Λ
∧

 
determine the halfwidths and the shifts of separate lines in 
a spectrum. The nondiagonal matrix elements reflect the 
collision–induced correlation among the lines (i.e., the 
collisional interference), and they are responsible for a 
number of anomalies observed in spectral line profiles, 
especially when the latter are transformed by pressure.4–7 

According to Eq. (1), calculations of the impact 
relaxation parameters are connected closely with 
calculations of the matrix elements of the scattering 

superoperator U
∧

 (∞,–∞). Naturally, the latter can be 
calculated using any known methods of calculation of 
scattering matrices represented in a superoperator 
formalism. The most direct way for these calculations is to 
use the iteration series of a perturbation theory. It is 
precisely this method of calculation of impact relaxation 
parameters which had been developed in Ref. 8. In a special 
case of isolated spectral lines it is reduced to the known 
Anderson–Tsao–Curnutte–Frost method of calculation of 
the line halfwidths and shifts of line centres.9–11 
Nevertheless, this way faces some problems associated with  
_______________________________ 

2) For vectors in the spectral line space we use the 

designation if+ > = i><f  borrowed from Ref. 1. 
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the divergence of the integral over the aiming parameter on 
its lower limit, the elimination of which requires the 
application of poorly conditioned artificial methods.9,10 Due 
to this reason, the methods leading to an exponential 
representation of the matrix element are preferable, and 
that representation can be considered as a partial summation 
of the iteration series. Similar methods were used, for 
example, in Refs. 3, 12–15. We develop below the version 
used in Ref. 15. 

 
2. REDUCED MATRIX ELEMENTS OF THE IMPACT 

RELAXATION OPERATOR 
 
Our immediate task is to represent the reduced matrix 

element of Λ
∧

 operator in terms of the reduced matrix 

elements of the scattering superoperator U
∧

 (∞,–∞). Bearing 
it in mind, let us determine the vector in the Liouville space 
of a light–absorbing molecule as follows: 
 

⏐αi ji (αf jf)
+; π K Q . =  

 

= ∑
mi mf

  ⎝⎛ ⎠⎞
2 K + 1
2 ji + 1

1/2

 (jf K mf Q ⏐ji mi)⏐αi ji mi (αf jf mf)
+., (4) 

 

where π = πi × πf (the parity indices enter into the set of 

quantum numbers αi and αj). Formula (3) can be written now as 

Λ
∧ (πK)

i′f′; if =
1

2K + 1 ∑  n αi′ ji′ (αf′ jf′)
+; 

 

π K Q ⏐Λ
∧

⏐ αi ji (αf jf)
+; π K Q.. (5) 

 

Note, that the vectors in Eq. (4) correspond formally 
to the momentum coupling scheme jf – ji = K, and they 

transform according to the irreducible representation (πK) 
of the rotation–inversion group. 

Rewrite then the trace from Eq. (1) following Ref. 16 
 

Trb {[1 – U
∧

 (∞, –∞)] ρb} = n 1b ⏐1
∧

 – U
∧

 (∞, –∞)⏐ ρb., (6) 
where the following vectors are introduced:  
 

⏐1b. = ∑
βl

 (2 l + 1)1/2 ⏐ βl (βl)+; 00., (7) 

 

⏐ρb. = ∑
βl

 (2 l + 1)–1/2 ρb
βl ⏐ βl (βl)+; 00., (8) 

and the populations ρb
βl are defined by the formula  

 

ρb
βl = 

Sβl (2 l + 1) exp {– Eβl / (kB T)}

∑
βl

 Sβl (2 l + 1) exp {– Eβl / (kB T)}
 . (9) 

 
Here kB is the Boltzman constant, Τ is the gas temperature, 

and Eβl are the energies of the levels β l. 

The orthonormal vectors ⏐βl(βl)+;00> are defined by 
the formula

 
 

⏐βl (βl)+; 00 . = (2 l + 1)–1/2 ∑ ⏐βl μ (βl μ)+; 00. (10) 
 
and correspond to the momentum coupling scheme  
lf – li = 0. The latter is a direct consequence of their use 

only in the operation of averaging over thermostat particle 
states. 

Using Eqs. (6)–(8) we obtain the reduced matrix 
element of the impact relaxation operator 
 

Λ
∧ (πK)

n
∧

 m
∧  = – i ηb ⌡⌠ dν P(ν)

⎩
⎨
⎧ 

 
δ
n
∧ 

m
∧  – ∑

βl
 ρb

βl ( )2 l′ + 1
2 l + 1

1/2

 × 

 

× n n
∧

 (γ
∧

) ⎜⎜ U
 ∧

(πK)(∞, –∞) ⎜⎜ (β
 ∧

) m
 ∧

 .
⎭
⎬
⎫ 

 
, (11) 

 
where for brevity sake, the following definitions are made 
 

⏐m
 ∧

. = ⏐αi ji (αf jf)
+; π K Q.,  

 

⏐n
∧

. = ⏐αi' ji' (αf′ jf′)
+; π K Q., 

 

⏐β
∧
. = ⏐βl (βl)+; 00., ⏐γ

∧
 . = ⏐βl (βl)+; 00., 

 

⏐ (β
∧
) m

 ∧

. = ⏐β
∧
. ⏐ m

 ∧

., ⏐ (β
∧
) n

∧

. = ⏐β
∧
. ⏐ n

∧

., 
 
and the matrix element of the scattering superoperator 

U
∧

 (∞,–∞) is introduced as 
 

n n
∧

 (γ
∧
) ⎜⎜U

∧
 (pK)(∞, –∞) ⎜⎜ (β

∧
) m

 ∧

. = 
 

= 
1

2 K + 1 ∑
Q

  n n
∧

 (γ
∧
) ⏐U

∧
 (∞, –∞)⏐ (β

∧
) m

 ∧

.. (12) 

 

Note as a conclusion, that vectors of the type ⏐(β
∧
) m

 ∧

. 
are the special case of the vectors ⏐αi ji (αf jf)

+;  

Ks βili (βflf)
+; Kb KQ . which correspond to the 

momentum coupling scheme 
 
ji – jf = KS, li – lf = Kb, KS + Kb = K, (13) 

 
and form a complete set. 

 
3. REPRESENTATION IN THE EXPONENTIAL FORM 

 
There are several possiblities to represent the matrix 

elements of the scattering matrix in the exponential form. 
For this purpose we will use the method of a solution of the 
evolution equation in the matrix form developed in Ref. 12. 
Since this method allows one to calculate only diagonal 
matrix elements, the eigenbasis of the matrix of the reduced 

matrix elements of the superoperator U
∧

 (∞,–∞) will be used 
for calculations. First, transform the formula (11) by 
expressing the reduced matrix element of the relaxation 

superoperator Λ
∧

 through the diagonal matrix elements of the 

scattering superoperator. Let ⏐σ
∧
 . be the eigenvector of the 

matrix of the reduced matrix elements of the superoperator 

U
∧

 (∞,–∞) 
 

U
∧

 (πK)(∞, –∞) ⏐ σ
∧

u . = u
∧
 ⏐ σu ., (14) 

 

⏐σ
∧

u . = D ⏐ κ
∧
 (α

∧
) .. (15) 
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Then instead of Eq. (11) we can write down 
 

Λ
∧ (πK)

n
∧

 m
∧  = – i ηb ⌡⌠ dν P(ν)

⎩
⎨
⎧ 

 
δ

n
∧
 
m
 ∧ – ∑

βl
 ρb

βl ( )2 l′ + 1
2 l + 1

1/2

 × 

 

× ∑
κ
∧
,α

∧

  n n
∧

 (γ
∧
) ⎜⎜ D ⎜⎜ κ

∧
 (α

∧
) . n κ

∧
 (α

∧
) ⎜⎜ D–1 ⎜⎜ (β

∧
) m

 ∧

 . × 

 

× n σ
∧

u ⎜⎜ U
∧  (πK)

(∞, –∞) ⎜⎜ σ
∧

u .
⎭
⎬
⎫ 

 
. (16) 

 
Invariance properties of the relaxation superoperator 

with respect to transformation of the rotation–inversion group 
have been studied in Ref. 16, where, in particular, it was 
shown that in the basis appropriate to the momentum coupling 
scheme given by Eq. (13) its matrix elements are diagonal on 
K and Q and do not depend on Q. The latter circumstance 
allows us to calculate the usual matrix element at some fixed 
value of Q instead of the reduced one. Representing for 

convenience the interaction Liouvillian L
∧

c(t) as a sum of 

isotropic and anisotropic parts 
 

L
∧

c(t) = V
 ∧

(t) + R
 ∧

(t) (17) 

 
and applying somewhat changed technique from Ref. 12 for 
solving the evolution equation, we obtain the reduced 
matrix element of the scattering superoperator 

 

nσ
∧

u ⎜⎜U
∧  (πK)

 (∞, –∞) ⎜⎜σ
∧

u .= exp {  – n σ
∧

u ⎜⎜A
∧ (πK)

 ⎜⎜ σ
∧

u . }  ,  

(18) 
 

where A
∧ (πK)

 is the matrix of the reduced matrix elements of 

superoperator A
∧

 which is diagonal in the basis of the vectors 

α u., and A
∧

 is determined by the series 

 

A
∧

 = i ⌡⌠
–∞

+∞

 V
∧

 (t) dt + ⌡⌠
–∞

+∞

 dt1 ⌡⌠
–∞

t1

 dt2 L
∧

′(t1) L
∧

′(t2) + (19) 

 
+ higher order terms. 

 
Here the prime means that the interaction Liouvillian has 
no diagonal matrix elements in the basis (15).  

Substituting Eq. (18) into Eq. (16) we obtain the 
required representation for the reduced matrix element of 
the impact relaxation superoperator  
 

Λ
∧ (πK)

n
∧

 m
∧  = – i ηb ⌡⌠ dν P(ν)

⎩
⎨
⎧ 

 
δ

n
∧
 
m
 ∧ – ∑

βl
 ρb

βl ( )2 l′ + 1
2 l + 1

1/2

 × 

 

× ∑
κ
∧
,α

∧

 n n
∧

 (γ
∧
) ⎜⎜ D ⎜⎜ κ

∧
 (α

∧
) . n κ

∧
 (α

∧
) ⎜⎜ D–1 ⎜⎜ (β

∧
) m

 ∧

 . × 

 

× exp {– n σ
∧

u ⎜⎜ A
∧ (πK)

 ⎜⎜ σ
∧

u .}
⎭
⎬
⎫ 

 
. (20) 

 

Firstly this result was obtained in Ref. 15. It can be 
shown that accounting for first two terms in the series (19) 
the results obtained by iteration method are reproduced 
exactly after expanding the exponent with an accuracy of the 
second–order interaction terms. But the formula (20) contains 
also principal distinctions which will be discussed below. 

The formal scheme of calculations of relaxation 
parameters using Eq. (20) is as follows. The reduced matrix 

elements of the superoperator A
∧

 are calculated in an initial 
basis at every step of averaging over classical collision 
parameters and quantum states of a thermostat particle, thus 

forming the matrix A
∧ (πK)

. Then this matrix is reduced to the 
diagonal form, as a result of which its eigenvalues and the 
matrix D of eigenvectors became determined. After that the 
value of the reduced matrix element of the relaxation 
superoperator is calculated with the use of Eq. (20). 

The described scheme apparently is of a high labour 
capacity, since its every step requires the diagonalization of a 
matrix which dimension is equal to the product of the line 
space dimension by the number of states of the buffer molecule 
involved in the averaging procedure. Therefore, this scheme in 
its immediate appearance may be applied only in cases when 
significant simplification is possible, for example, for 
broadening by particles having no internal structure,17 or self–
broadening, or the ammonia inversion spectrum broadening by 
foreign gases.18–20 

A modification of the scheme which allow the significant 
enchancement of its potentialities is given in the next part. 

Here we note that nondiagonal appearance of the matrix A
∧ (πK)

 
in the initial basis not only leads to emergence of new 
relaxation parameters, but, as was shown in Refs. 18–20, also 
affect the spectral line halfwidths, sometimes appreciably. 

 
4. MODIFICATION OF THE FORMULA (20) 
 
If buffer molecule possesses a quantum structure, then, 

as was mentioned above, the dimension of a matrix to be 
diagonalized becomes very large. However, in a number of 
cases interesting for applications it can be reduced down to the 
dimension of a line space with relatively small losses in 

accuracy. Let us consider for this purpose the matrix A
∧ (πK)

. In 
the second order of a perturbation theory on the interaction 
Liouvillian it can be represented as a sum of two matrices 

{  Λ
∧ (πK)

n
∧

 m
∧ }   = {[i S1 (n

∧

, m
 ∧

 ⏐ν) + S2 (n
∧

, m
 ∧

 ⏐ν)outer +  

 

+θ2 (n
∧

, m
 ∧

 ⏐ν)middle] δββ′} + {θ2 (n
∧

, m
 ∧

 ⏐ν)middle (1 – δββ′)}, (21) 

 
where the first matrix is diagonal, and the second is 
nondiagonal in the basis of eigenstates of a buffer molecule. 

The explicit expressions for S1(n
∧

, m
 ∧

 ν ), S2(n
∧

, m
 ∧

 ν )outer, 

and θ2(n
∧

, m
 ∧

 ν )middle are given in Ref. 2 in a slightly 

different notations. Considering the second matrix as the 
perturbation, we represent the matrix of the reduced matrix 
elements of a scattering superoperator as  

U
∧  (πK)

(∞, –∞) ≈ exp [ ]– A
∧ (πK)

1
⎩
⎨
⎧ 

 
1 – ⌡⌠

0

1

 ds exp [ ]A
∧ (πK)

1  s  × 

× A
∧ (πK)

2  exp [ ]– A
∧ (πK)

1  s
⎭
⎬
⎫ 

 
. (22) 
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This formula can be simplified if we assume that the 

matrices A
∧ (πK)

1  and A
∧ (πK)

2 , the sense of which is evident from 

Eq. (21), are approximately commutative. In this case 
 

U
∧  (πK)

(∞, –∞) ≈ exp [ ]– A
∧ (πK)

1  ( )1 – A
∧ (πK)

2 . (23) 

 
Substituting Eq. (23) into Eq. (11), we obtain for an 

arbitrary reduced matrix element of the impact relaxation 
operator: 
 

Λ
∧ (πK)

n
∧

 m
∧  = – i ηb ⌡⌠ dν P(ν)

⎩
⎨
⎧ 

 
δ

n
∧
 
m
 ∧ – ∑

βl
 ρb

βl ∑
κ
∧

 ∑
γ
∧

 ( )2 l′ + 1
2 l + 1

1/2

 × 

 

× n n
∧

 (γ
∧
) ⎜⎜1 – A

∧ (πK)

2 ⎜⎜ κ
 ∧
 (β

∧
) > ∑

r
∧
  n κ

 ∧
 (β

∧
) ⎜⎜D⎜⎜ r

 ∧
 (β

∧
) . × 

 

× n r
 ∧
(β

∧
) ⎜⎜D–1⎜⎜(β

∧
) m

 ∧

. exp{– n r
 ∧
(β

∧
)⎜⎜D A

∧ (πK)

1  D⎜⎜r
 ∧
(β

∧
).}

⎭
⎬
⎫ 

 
, (24) 

 

where D is the matrix of eigenvectors of the matrix A
∧ (πK)

1  

with the dimension equal to that of line space. 
The possibility to consider the second matrix in 

Eq. (21) as a small perturbation follows from the structure 

of quantities θ2(n
∧

 , m
 ∧

ν )middle (see Eq. (36) in Ref. 2). At 

n
∧

 = m
 ∧

 these quantities coincide with S2(b)middle from 

Refs. 10 and 11. Their characteristic feature is that, as 

distinct from S2(n
∧

 , m
 ∧

ν )outer, they do not contain the 

inner summing over the states of a light–absorbing 
molecule. Therefore the conditions close to resonance ones 
are realized rarely, that causes the relatively small values of 
these quantities. 

Let us consider the particular case of isolated spectral 

lines, when the matrix A
∧ (πK)

 is obviously diagonal, and, 
consequently, the matrix D is the unit one. As a result, the 
formula (24) is simplified significantly 
 

Λ
∧ (πK)

n
∧

 m
∧  = – i ηb ⌡

⌠ 

 
dν P(ν) × 

 

×
⎩
⎨
⎧ 

 
1 –∑

βl
 ρb

βl exp {– n m
 ∧

 (β
∧
) ⎜⎜A

∧ (πK)

1 ⎜⎜ m
 ∧

 (β
∧
) .} × 

 

× ∑
γ
∧

 ( )2 l′ + 1
2 l + 1

1/2

 [δ
β

 ∧

 
γ

∧
 – n m

 ∧

 (γ
∧
) ⎜⎜1 – A

∧ (πK)

2 ⎜⎜ m
 ∧

 (β
∧
) .]

⎭
⎬
⎫ 

 
, (25) 

 
and coincides with the Robert–Bonamy formulas (12) and 
(13) in Ref. 14 written for spectral line halfwidth and shift, 
respectively. 

 
5. SELF–BROADENING OF AMMONIA ROTATIONAL 

SPECTRAL LINES 
 
As an example illustrating the efficiency of the formula 

(24), we consider self–broadening of rotational lines of 
ammonia on the basis of the model described in Ref. 21 and 
shown in Fig. 1. This model is based on the fact that, due to a 
large value of ammonia rotational constant B, the spectral 

exchange between the components of rotational doublets is all 
that is essential, and consequently, the line space is expanded 
into a direct sum of two–dimentional subspaces 
correspondenting to the rotational doublets at K ≠ 0 and to 
one–dimentional ones corresponding to the singlet lines at 
K = 0. The main details of the calculation are the same as in 
Ref. 21, and therefore we omit them. The calculations were 
carried out only for (J, J) doublet lines at T = 300 K. The 
phase effects were not taken into account because of their 
smallness.21 

 

 
 

FIG. 1. The model of collisional line interference for the 
rotational spectrum of ammonia.21 The solid arrows 
correspond to radiative transitions, dashed ones mark 
collision–induced nonradiative transitions. 

 
The calculational results are presented in Fig. 2, where 

the experimental data on line halfwidths22 is plotted 
together with the theoretical data concern both the line 
halfwidths and the cross–relaxation parameters calculated 
in Ref. 21 on the basis of Eq. (20) in the assumption that 
the doublet components are broadened identically which 
allows the analytical performance of the diagonalization of 

two–dimentional submatricies of the A
∧ (πK)

(J, K ) type. Our 
calculations also did not reveal any noticeable difference in 
broadening of the doublet components which confirms the 
arguments given in Ref. 21. 

 

 
 

FIG. 2. The line halfwidths and cross–relaxation 
parameters for rotational (J,J) doublets of the ammonia 
molecule. The solid line corresponds to the experiment22, 
—°—°— corresponds to theoretical data from Ref. 21, and 
+–+– corresponds to present calculations. 
 

The formal difference between both the calculations, if 
neglect the phase effects, thus comes to the presence of the 

factor ∑
γ
∧

 [(2l′ + 1) (2l + 1)]1/2 n n
∧

 (γ
∧
) ⎜⎜1 – A

∧ (πK)

2 ⎜⎜ κ
 ∧
 (β

∧
) . 

in Eq. (24) instead of the unit in the correspondent formula in 
Ref. 21. As a consequence, the values of cross–relaxation 
parameters obtained in the present calculations increase  
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approximately up to 20%. As to the line halfwidths, the effect 
is much weaker and causes their insignificant decrease. These 
facts are not unexpected and can be seen immediately from 
analysis of Eq. (24). 
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