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In this paper we solve the problem on constructing optimal basis for mode 
representation of random phase of an optical wave in turbulent atmosphere. We 
propose an algorithm for obtaining eigenfunctions and eigenvalues of the integral 
operator with a difference kernel for the case of circular aperture and invariance of 
the form of eigenfunctions relative to rotation of a coordinate system. We also 
describe a technique of optimization of the classical Zernike expansion by optimizing 
coefficients of this expansion based on additional information about spatial correlation 
of the phase fluctuations. 

 
An integral relation between the phase distribution 

within the confines of the given aperture and phase partial 
derivatives was suggested by us in Ref. 1. The magnitudes 
of such derivatives (wave front tilts) are the output signals 
of the Hartman sensors or the shift interferometers. The 
analytical relationships1 for calculation of the coefficients of 
phase expansion in terms of Zernike polynomials from the 
results of measurement of the tilts are quite sufficient in the 
case of classical aberrations2 or when phase distortions can 
be represented adequately by a few lower–order modes of 
Zernike expansion. 

The self–sufficiency of the Zernike representation is 
violated in the case of higher order turbulent aberrations or 
in the case of aberrations caused by the adaptive system 
itself. The developers of adaptive optics systems should take 
into account that the Zernike expansion is close to the 
optimal one when approximating the atmospheric phase 
aberrations of not higher than fifth order.3 For more 
accurate representation of the turbulent aberrations it is 
necessary to use the expansion in terms of the Karhunen–
Loeve–Obukhov (K–L–O) eigenfunctions, which is 
universal for random fields.4,5 However, this basis is of 
limited usefulness since it is generally agreed that "these 
functions should be calculated numerically because they can 
not be expressed analytically" (Ref. 6, p. 289) and "these 
functions have a complex structure and their applicability in 
the correcting devices is troublesome" (Ref. 7, p. 49). 

In this paper we derive the analytical representation of 
the K–L–O basis, show the relation between this expansion 
and Zernike one (this makes it possible to use the 
traditional correcting devices). We also represent the 
coefficients of expansion of the atmospheric phase 
aberrations in K–L–O basis through the wave front tilts. 

Let us represent the phase distribution S(ρ) over the 
receiving aperture as the expansion in terms of the complete 
orthonormal set of functions Ψk(ρ) 

S(ρ) = ∑
k=0

∞
 bk Ψk(ρ). (1) 

 
The coefficients of the series bk in the framework of 

the hypothesis of frozen turbulence8 are random variables  

since the phase in a turbulent atmosphere is a random one. 
We define the orthonormal system of functions Ψk(ρ) so 

that norm of the ensemble–averaged error of wave front 
approximation be minimal. It is known that the problem of 
such basis constructing can be solved if the conditions of 
K–L–O theorem are fulfilled.4,5 In accordance with this 
theorem the minimum norm of the error <ε2> of random 
function approximation is achieved with the basis of N 
eigenfunctions corresponding to N maximum eigenvalues of 
the integral operator with a phase correlation function 
Bs(ρ, ρ′) as a kernel. If the random phase is to be 

approximated within the confines of the aperture with the 
pupil function W(ρ), the problem of derivation of such 
eigenfunctions is reduced to the solution to the integral 
equation 
 

⌡⌠ ⌡⌠ W(ρ′) Bs(ρ, ρ') Ψk(ρ′) d
2 ρ′ = Λk Ψk(ρ), (2) 

where  
Bs(ρ, ρ′) = <[S(ρ) – <S(ρ)>] [S(ρ′) – <S(ρ′)>]>, 
 

and the angular brackets denote the averaging over 
ensemble. The mean–square error of the approximation of 
random phase <ε2> is defined by the following relationship: 
 

<ε2> =
⎩
⎨
⎧ 

 ⌡⌠
–∞

∞
 
 W(ρ′) <[S(ρ′) – <S(ρ′)>– 

–

 

∑
k=0

N
 bk Ψk(ρ′)]

2> d2 ρ′
⎭
⎬
⎫ 

 min

= ∑
k=N

∞
 Λk . (3) 

 

The coefficients of the K–L–O expansion are 
uncorrelated and the phase expansion itself is the most 
informative at a given number of terms of expansion series 
as compared with the expansions of S(ρ) in terms of any 
other basis with the same quantity of terms. 

The integral equation (2) allows us to construct the 
eigenfunctions of expansion for the phase centralized 
relative to its mean values. In this case for circular aperture 
of radius R at 
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W(ρ′) = 
⎩
⎨⎧
1, ⏐ρ⏐ ≤ R,

0, ⏐ρ⏐ > R ,
 

 

taking into account the orthonormality of Ψk we obtain 

instead of Eq. (1) 
 

S(ρ) = 
1

π R2 ⌡⌠
–∞

∞
 
 W(ρ′) S(ρ′) d2 ρ′ + ∑

k=1

∞
 bk Ψk(ρ). (4) 

 

The first term of the representation describes the phase 
averaged over the aperture similarly Zernike expansion. As a 
rule, this parameter for adaptive optics is not important, 
therefore the first term of expansion (4) is usually omitted. 

Using the relation between correlation and structure 
functions we can rewrite the relationship (2) in the form 
 

Bs(ρ, ρ′) = 
1
2 Bs(ρ, ρ) + 

1
2 Bs(ρ′, ρ′) – 

1
2 Ds(ρ, ρ′), 

where  
 
Ds(ρ, ρ′) = <[[S(ρ) – <S(ρ)>] – [S(ρ′) – <S(ρ′)>]]2>. 
 

Based on the orthogonality of the set Ψk and setting that 

the phase variance varies slightly within the confines of the 
receiving aperture we can write instead of (2)  
 

– 
1
2 ⌡⌠ ⌡⌠ d2 ρ′ W(ρ′) Ds(ρ, ρ′) Ψk(ρ′) = Λk Ψk(ρ), (5) 

 

⌡⌠ dρ′ W(ρ′) Ψk(ρ′) = 0,  if k ≠ 0. 

 

In addition, we require that the sought eigenfunctions 
should be of invariant form under rotation of a coordinate 
axes. The fulfilment of this requirement implies that Ψk(ρ) 

should be of the following form2: 
 

Ψk(ρ) = K l(ρ) exp (i l θ), ρ = {ρ, θ}. 
 

Let the random field of the phase fluctuations be locally 
homogeneous and isotropic one (Ds(ρ, ρ′) = Ds(⏐ρ – ρ′⏐)). 

Then we can rewrite the relationship (5) in the form 
 
K l(ρ) exp (i l θ) Λk = 
 

= – 
1
2 ⌡⌠

0

R

 ρ′ dρ′ ⌡⌠
0

2π

 dθ′ Ds(ρ, ρ′, θ – θ′) K l(ρ′) exp (i l θ′). (6) 

 

We introduce the notation
 
 

Ml(ρ, ρ′) =– 
1
2 ⌡⌠

0

2π

 dθ′ exp(i l θ′) Ds( ρ2 + ρ′2 – 2ρ ρ′ cosθ′) (7) 

 

and after simple rearrangements instead of (6) we obtain the 
homogeneous integral Fredholm equation of the second 
type9 

 

⌡⌠
0

R

 Ml(ρ, ρ′) K l(ρ′) ρ′ dρ′ = λl K l(ρ). (8) 

 

Since the eigenvalues of integral equation (8) coincide 
with the eigenvalues of integral equation (5) then in (8) we 
rename the ΛΛk as λl. Obtained by such a way equation will 

be named as adaptive integral equation. 

In the paper3 published previously the authors derive 
an integral equation akin to Eq. (8) and present the final 
results of its solution using known to them standard 
numerical methods of calculation of the eigenfunctions and 
eigenvalues of corresponding integral operator. Further we 
will try to obtain the analytical results using the numerical 
methods only in the exceptional cases. Let us present the 
phase structure function Ds(ρ) by such a way that the 

kernel of integral equation be degenerate. To make this we 
expand the Ds(ρ) in terms of Bessel functions 
 

Ds(ρ) = ∑
p=0

∞
 ap J0 ( )μp 

ρ
2R  , (9) 

 
where J0(x) is the Bessel function of the first type of zeroth 

order, ap = 
2

R2 [J ′0 (μp)]
2 ⌡⌠

0

R

 ρ Ds(ρ) J0( )μp 
ρ

2R d ρ, and μp 

are the roots of equation J0(μ) = 0. 

Substituting the expansion (9) in Eq. (7), integrating, 
and using the formula of summing the Bessel function10 

 

J0( ρ2 + ρ′2 – 2ρ ρ′ cosθ′ ) = 

= J0(ρ) J0(ρ′) + 2 ∑
m=1

∞
 Jm(ρ) Jm(ρ′) cos mθ, 

 

we obtain the following expression for kernel Ml(ρ, ρ′): 
 

Ml(ρ, ρ′) = – π ∑
p=0

∞
 ap Jl( )μp 

ρ
2R  Jl( )μp 

ρ′
2R . (10) 

 
After substitution of series (10) in Eq. (8) the latter can be 
rewritten as 
 

∑
p=0

∞
 dl

p Jl( )μp 
ρ

2R  = K l(ρ), (11) 

 

with unknown constants  
 

dl
p = 

– π ap

λl
 ⌡⌠

0

R
 

 
Jl( )μp 

ρ′
2R K l(ρ′) ρ′ d ρ′. 

Let us select the coefficients dl
p so that the function 

K l(ρ) defined by the formula (11) be the solution of the 
integral equation (8). To do this we use the expansion (11) 
in the both parts of Eq. (8) and since the Bessel functions 
Jl(αx) and Jl(βx) are linearly independent we equate the 

coefficients of the same Bessel functions in the both parts. 
As a result we obtain the infinite homogeneous system of 
the linear algebraic equations for unknown constants dl

p 

 

λl d
l
p = ∑

p'=0

∞
 d lp' c lpp′ , (12) 

 
where 

c lpp′ = – π ap ⌡⌠
0

R
 

 
Jl( )μp 

ρ
2R  Jl( )μp′ 

ρ
2R  ρ dρ = 

=
–π ap 4R

2

(μp)
2–(μp′)

2[μp′Jl–1(μp′/2) Jl (μp/2)–μpJl–1(μp/2)Jl (μp′/2)] 
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or if p = p′ then 
 

= 
R2

2  
⎩
⎨
⎧

⎭
⎬
⎫[J′l (μp/2)]2 – 

⎝
⎛

⎠
⎞1 – 

l 2

2 μ2
p

 [Jl (μp/2)]2  , l > – 1. 

 
Being limited in the expansions (9)–(11) by the terms of 

Pth order we rewrite the relation (12) in the operator form  
 
C d = λl d , (13) 

 
where C = (c lpp′) is the Gramm matrix and d = (dl

1, d
l
2, ..., d

l
p)

T 

is the vector–column. Determinant of the system (13) is 
represented in the form 
 

D(λl) =

 

 

 

 

cl
11 – λl cl

12 ... cl
1P

cl
21 cl

22 – λl ... cl
2P

... ... ... ...
cl
P1 cl

P2 ... cl
PP – λl

 

 

 

 

 

 
or D(λl) = det (C – λl I), where I is the unit matrix. D(λl) 

is the polynomial of P power with respect to variables λl. 

Let us find its roots λ(1)
l , λ(2)

l , ..., λ(j)
l , ..., λ(P)

l  diagonalizing 

the Gramm matrix and thereafter the components of 
eigenvectors d ljp of the C matrix which are the coefficients 

of the expansion K–L–O in terms of Bessel functions  
 

Ψk(ρ) = K lj(ρ) exp (i l θ) = ∑
p=0

P
 d ljp Jl(μp ρ/2R) exp (i l θ). (14) 

 
Index j in representation of K lj(ρ) in contrast to K l(ρ) from 

Eqs. (5) to (11) is introduced to denote the splitting of 
radial mode K l(ρ) over index j. 

To put into correspondence the functions Ψk(ρ), 

where k = 1,2, ... , K with the obtained functions K lj

(ρ) exp (i l θ) we arrange eigenvalues λ(j)
l  corresponding 

to them in order of decreasing of their magnitudes 
Λ1 > Λ2 > Λ3 > ... > ΛK basing on condition Λ1 = max λ(j)

l . 

In line with the derived order we sort the eigenfunctions 
K lj(ρ) exp (i l θ). The obtained sequence of functions 

Ψk(ρ), k = 1, 2, ... , K is the sequence of K–L–O modes. 

Before the numerical realization of this approach we 
obtain the formulas which relate the mode representation of 
wave front aberrations on the basis of Zernike polynomials 
and in terms of K–L–O eigenfunctions. 

In existing adaptive systems6,7 the devices correcting 
the turbulent distortions of optical wave operate in regimes 
of mode or zonal step compensation. The Zernike basis is 
used, as a rule, in the case of mode compensation and 
therewith final–control apparatus correct tilts, defocusing 
of wave front, and higher–order aberrations. Let us set the 
task of optimizing the corrector which operates on Zernike 
basis through the K–L–O functions.  

Turning back to expressions for functions Ψn(ρ) and 

Zernike polynomials Zn(ρ) 
 
Ψn(ρ) = K lj(ρ) exp (i l θ),  Zn(ρ) = Rl

j(ρ) exp (i l θ) , (15) 

 

we see that their azimuth parts coincide. It remains to find 
the relationship between radial parts. To do this, we rewrite 
(8) in the following form: 
 

⌡⌠
0

R

 Ml(ρ, ρ′) K lj(ρ′) ρ′ dρ′ = l(j) 
l
 K lj(ρ). (16) 

 
We will seek a solution in the form of expansion  

K lj(ρ) = ∑
n=1

∞
 w ljn R

l
n(ρ). (17) 

 
Let us multiply Eq. (16) by Rl

n(ρ)ρ and integrate the result 

within the confines of aperture of radius R. Using the 
orthonormality of functions of Rl

n(ρ) 
 

⌡⌠
0

R

 Rl
n(ρ′/ R) Rl

k(ρ′/ R) ρ′ dρ′ = 
R2

2(n + 1) δkn , 

 
where δk n is the Kroneker–symbol, the known 

relationship2  
 

⌡⌠
0

R
 

 
Rl

n(ρ′/ R) Jl (γ 
ρ′
R) ρ′ dρ′ = (– 1)(n–l)/2 R2 

Jn+1(γ)

γ  , 

 
as well as the representation of the kernel (10) we obtain 
for the vector–line w lj (w

l
j1, w

l
j2, ..., w

l
jN) at finite number 

of terms in series (17) the following system of equations 
 

∑
n=1

N
 w ljn⎣

⎡
⎦
⎤β lkn – λ (j)l  

δkn

2(n + 1) = 0, k = 1, 2, ... , K, K = N, (18) 

 
where the matrix β l has the following elements: 
 

β lkn = – 4π ∑
p=0

P
 ap (– 1)(k+n–2 l)/2 

Jk+1(μp) Jn+1(μp)

μ2
p

 . 

In operator form the expression (18) can be rewritten as 
 
(β l – λ (j) l  I) w lj = 0. (19) 

 
The solution to the system (19) allows us to find the unknown 
coefficients of expansion of radial part of K-L-O functions (17) 
using the radial part of Zernike polynomials. Hence, we have  
 

Ψk(ρ) =~ exp (i l θ) ∑
n=1

N
 w ljn R

l
n (ρ) . (20) 

 

Taking into account that the set of indexes l, j 
corresponding to the eigenvalues λ(j)

l  arranged in descending 

order is in agreement with the values of k = 1, 2, ..., K we 
can rewrite the expression (20) as 
 

Ψk(ρ) = exp (i l θ) ∑
n=1

N
 w kn R

l
n (ρ), (21) 

 
or in the generalized form  
 



V.P. Aksenov and Yu.N. Isaev Vol. 7,  No. 7 /July  1994/ Atmos. Oceanic Opt.  509 
 

 

Ψk(ρ) = ∑
n=1

N
 v kn Zn (ρ) . (22) 

 

The use of the formulas (4) and (20)–(22) allows us to 
construct the phase expansion in terms of the Zernike 
polynomials with the coefficients optimized in line with the 
information on randomly inhomogeneous atmosphere. Such an 
information is derived from the known correlation function of 
phase fluctuations Bs(ρ, ρ′). 

Let now the coefficients of the expansion of random 
phase in terms of Zernike polynomials be known 
 

S(ρ) = a0 + ∑
k=1

K
 ak Zk (ρ). (23) 

 

Let us obtain the optimal phase expansion, that is, the 
representation of the phase in K–L–O basis 
 

S(ρ) = b0 + ∑
m=1

M
 bm Ψm (ρ) ,  

 

where a0 = b0 is the phase averaged over aperture. 

Considering the Eq. (22) and the orthonormality of Zernike 
polynomials we derive the coefficients bm of the given 

expansion 
 

bm = 
1

π R2 ⌡⌠
0

2π

 ⌡⌠
0

R

 S(ρ, θ) Ψm(ρ, θ) ρ dρ dθ = 

 

= 
1

π R2 ∑
k=1

K
 ak ⌡⌠

0

2π

 ⌡⌠
0

R

 Zk(ρ, θ) Ψm(ρ, θ) ρ dρ dθ = 

 

= 
1

π R2 ∑
k=1

K
 ak ∑

n=1

N
 v mn ⌡⌠

0

2π

 ⌡⌠
0

R

 Zk(ρ, θ) Zm(ρ, θ) ρ dρ dθ = 

 

= ∑
k=1

K
 ak ∑

n=1

N
 v mn δnk = ∑

n=1

N
 v mn an , if N ≤ K . (24) 

 

Rewriting the (24) in the matrix form we have 
 

b = V a, if M = N, (25) 
 

where b = (b1, b2, ..., bN) are the coefficients of phase 

expansion in K–L–O basis and a = (a1, a2, ..., aN)T are the 

coefficients of phase expansion in terms of Zernike 
polynomials; V = (v mn) is the transformation matrix from the 

Zernike basis to the K–L–O basis, T is the sign of 
transposition. The transformation matrix V{v mn} allows us to 

turn from Zernike expansion, the coefficients of which are 
determined by "classical" methods to expansion in terms of 
Zernike polynomials, the coefficients of which are optimized in 
a sense of minimization of the mean value of norm (3). The 
finding of matrix V enables us to calculate the coefficients of 
this optimized expansion directly from the measurements of 
tilts of wave front with Hartman sensors or shift 
interferometers based on the analytically obtained relation 
between them and the coefficients of phase expansion into a 
classical Zernike series.1 

Thus, this paper is devoted mainly to description of a 
theoretical approach to the problem of obtaining an optimal 
mode expansion of phase. The second part of this paper 
contains the algorithms of numerical simulation of the 
approach described and the results of numerical experiments. 
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