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An exact formula for the radius of curvature of a sound beam derived for the 
case of a moving inhomogeneous medium is presented in this paper. The case of plane 
wave was investigated in a nonorthogonal curvilinear coordinate system referred to a 
reference beam. 

 
One of the well-known ways of describing the beam 

path is based on using the radius of the beam curvature ρ(s) 
as a function of the path length s (see Refs. 1, 2, and 3). 
Formula for the radius of curvature for inhomogeneous 
stationary medium is well-known.4 An approximate 
formula2 for ρ(s) derived for moving inhomogeneous 
medium is valid for small wind velocities. In this paper an 
exact formula for the radius of curvature of a sound beam is 
derived for the case of inhomogeneous moving medium using 
technique presented in Refs. 5 and 6. 

The study was carried out for the case of two-
dimensional space in a nonorthogonal curvilinear coordinate 
system in the vicinity of a reference beam. Implementation 
of the nonorthogonal coordinate system is physically 
justtified because when sound propagating in a moving 
medium the phase front is nonorthogonal to the beam 
direction (phase and group sound velocities are different).7 
This fact makes the mathematical representation of the 
initial equations more complicated, but the final forms of 
expressions become more simple and vivid that can be 
considered as justification of this approach. 

 

 
 

FIG. 1. 
 

Let us describe the coordinate system referred to a 
reference beam r(s, α) (see Fig. 1). The coordinate s varies 
along the unit vector es(s) which points the direction of the 

group velocity of sound in a reference beam; the coordinate 
q varies along the tangent line to the phase front at the 
point of its intersection with the reference beam (along the 
unit vector eq(s)); α is the angle of the beam outlet. Datum 

of the coordinate system (es(s); eq(s)) is nonorthogonal. 

Radius-vector of an arbitrary point M in this coordinate 
system has the following form: 

 
R(M) = r(s) + eq(s) q, 

 
where s is the coordinate of the point M on the reference 
beam; r(s) is the radius-vector of the coordinate s; q is the 
lateral coordinate of the point M. 

To determine the metric tensor qij for this coordinate 

system, we calculate the scalar product1 
 

( )dR
ds , 

dR
ds  = ⎝

⎛
⎠
⎞dr

ds + 
dq
ds eq +q 

deq

ds

2

. (1) 

 
Let us consider the term deq/ds in Eq. (1). From the 

geometry in Fig. 1 it follows that  
 

eq(s) = m(s) cosβ(s) – es(s) sinβ(s), (2) 
 

where m(s) is the unit vector orthogonal to es(s); β(s) is the 

angle between the directions of phase and group sound 
velocities (between n and es). Since the Frenet formulas3 

are correct for the vectors m(s) and es(s) 
 

dm
ds  = 

1
ρ es(s);  

des

ds  = – 
1
ρ m(s), (3) 

 
then using Eqs. (2) and (3) we obtain an important formula 
 
deq

ds  = – 1 / ρ* n(s), (4) 

 
where there occurs the following notation: 1/ρ*(s) = 
= 1/ρ(s) – dβ/ds ; n(s) is the unit vector normal to the 
phase front. Taking into consideration Eq. (4) and equality 
dr/ds = es in Eq. (1) we obtain 

 

(dR, dR) = ⎝⎛ ⎠⎞1 + 2 
q
ρ* cosβ + 

q2

ρ*2  (ds)2 – 2 sinβ dq ds + (dq)2. 

 
Hence 
 

gij = ( )1 + 2 q/ρ* cosβ + q2/ρ*2; – sinβ
– sinβ; 1  . 

 
To determine the sound beam path in moving media, it 

is necessary to find the relation 1/ρ*(s) with the parameters  
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of medium c(s, q) and v(s, q). After that, using 
expression (4), we can determine the beam path in the plane 
(s, q). 

The expression for 1/ρ*(s) is obtained when solving an 
eikonal equation under conditions of curvilinear 
nonorthogonal coordinates in a small vicinity of the 
reference beam. This equation can be written down in the 
following form:8 

 
(∇ θ)2 = (1 – ∇ θ, v(s, q))2 / c2 (s, q). (5) 
 
If the eikonal θ(s, q) and all terms involved in Eq. (5) are 
expanded in the Taylor series with respect to lateral 
coordinate q, and all terms with equal powers are grouped 
together, the sought expression will be found at the first 
power of q. 

Let us try to solve the problem. The terms constituting 
Eq. (5) should be represented in detail. Vector of the 
eikonal gradient has the covariant components. Hence 

 
(∇ θ)2 = g11 (∂θ/∂s)2 + 2 g12 ∂θ/∂s ∂θ/∂q + g22 (∂θ/∂q)2, (6) 
 
where gij is the matrix inverse to the matrix gij. Since the 

components of the vector v(s, q) are covariant, the scalar 
product of ∇θ and v(s, q) can be presented in the form 
 
(∇ θ, v) = ∂θ / ∂s νs(s, q) + ∂θ / ∂s νq(s, q), (7) 
 
where vs(s, q) and vg(s, q) are the components of the vector 
v(s, q) in the curvilinear nonorthogonal coordinate system. 

We shall find the solution of eikonal equation (5) in 
the following form: 

θ(s, q) = θ0(s) + 
1
2 θ2(s) q

2 + ... , 

 

where θ0(s) = θ(s, 0), θ2(s) = (∂2θ/∂2q)q=0. Since the 

coordinate q varies along the axis tangent to the phase front 
at the point (s, q = 0) then (∂θ/∂q)q=0 = 0. 

At the same time, we expand all terms of eikonal 
equation (5) in a power series with respect to q 
 

∂θ/∂s = θ′0(s) + 
1
2 θ′2(s) q

2 + ... , (8) 

 

where the prime denotes the derivative with respect to  
ds: θ′0 = dθ0/ds and so on.  
 

∂θ/∂q = θ
2 
(s) + 

1
2 θ3 

(s) q2 + ... , (9) 

 

Taking into account Eqs. (8) and (9) and expanding all 
components of the tensor in power series with respect to q 
 

gij = g–1
ij  = 

1
g ( )1; sinβ

sinβ; 1 + 2 q/ρ* cosβ + q2/ρ*2 , 

 
where g = det gij = (cosβ + q/ρ*)2, we obtain 

 

(∇ θ)2 = 
1

cos2β
 
⎩
⎨⎧

⎭
⎬⎫θ′0

2 – 2 
1
ρc

 θ′0
2 q + (θ'0 θ′2 + 3 

1
ρ2

c
 θ′0

2 )q2 + 

 

+ 2 
tanβ
cosβ⎩

⎨⎧
⎭
⎬⎫θ′0 θ′2 q + (

1
2 θ′0 θ3 – 2 

1
ρc

 θ′0 θ2)q
2 + 

1
cos2β

 θ2
2 q

2. (10) 

 
Here three terms of Eq. (6) are successively expanded in the 
series correct to the second power of q, ρc = ρ* cosβ. 

The components of vector of wind velocity vs(s, q) and 
vq(s, q) and sound velocity are to be also expanded in the 
Taylor series 

 

νs(s, q) = νs
0(s) + νs

1(s) q + 
1
2 ν

s
2(s) q

2 + ... ; (11) 

 

νq(s, q) = νq
0(s) + νq

1(s) q + 
1
2 ν

q
2(s) q

2 + ... ; (12) 

 

c(s, q) = c0(s) + c1(s) q + 
1
2 c2(s) q

2 + ... , (13) 

 

where the following notations are introduced: 
 

νs
0(s) = νs(s, 0); νs

1(s) = (∂νs/∂q)q=0; ν
s
2(s) = (∂2νs/∂q2)q=0, 

 

(in the same way we use the designations for the component 
vq(s, q)), 
 

c0(s) = c(s, 0); c1(s) = (∂c/∂q)q=0; c2(s) = (∂2c/∂q2)q=0. 
 

Using Eqs. (8), (9), (11), and (12), write expression 
(7) as the series 

 
(∇ θ, v) = θ′0 ν

s
0 + (θ′0 ν

s
1 + θ2 ν

q
0) q + 

 

+ [ ]1
2 (θ′0 ν

s
2 + θ′2 ν

s
0) + (θ2 ν

q

1
 + 

1
2 θ3 ν

q

0
)  q2. (14) 

 
From Eq. (13) we obtain 
 

1
c2(s, q)

 = 
1

c2
0(s)

 
⎝
⎛

⎠
⎞1 – 2 

c1(s)

c0(s)
 q + 3 

c2
1(s)

c2
0(s)

 q2 – 
c2(s)

c0(s)
 q2  . (15) 

 
For brevity, let us introduce the following auxiliary 

notations: 
 

A = θ′0 ν
s
0;   B = (θ′0 ν

s
1 + θ2 ν

q
0);  

 

D = 
1
2 (θ′0 ν

s
2 + θ′2 ν

s
0) + (θ2 ν

q
1 + 

1
2 θ3 ν

q
0). (16) 

 
Taking into consideration Eqs. (14), (15), and (16), we 
obtain the expressions for the terms of eikonal equation (5) 
 

2 
(∇ θ, v)
c2(s, q)

 = 
2

c2
0(s)⎩

⎨
⎧
A – 

⎝
⎛

⎠
⎞2 A 

c1
 (s)

c0
 (s)

 – B  q + 

 

+ 
⎭
⎬
⎫

⎝
⎛

⎠
⎞3 A 

c2
1(s)

c2
0(s)

 – A 
c2(s)

c0(s)
 – 2B 

c1(s)

c0(s)
 + D  q2 , (17) 

 

(∇ θ, v)2

c2(s, q)
 = 

1
c2
0(s)⎩

⎨
⎧
A2 + 2 

⎝
⎛

⎠
⎞A B – A2 

c1
 (s)

c0
 (s)

q + 

 

+
⎭
⎬
⎫

⎝
⎛

⎠
⎞3 A2 

c2
1(s)

c2
0(s)

 –A2 
c2(s)

c0(s)
 – 4 AB 

c1(s)

c0(s)
+2 AD+B2 q2 . (18) 

 
Now group together all components of Eq. (5) for 

equal powers of q. For zero power of q we obtain the 
equation 
 

1
cos2β

 θ′0
2 + 2 

1
c2
0(s)

 θ′0 ν
s
0 – 

1
c2
0(s)

 θ′0
2 νs0

2 = 
1

c2
0(s)

 . 
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Solving the quadratic equation with respect to θ0′ we obtain 

 

θ0′ = 
cosβ (s)

c0(s) + νs0(s) cosβ (s)
 . (19) 

 
It is necessary to take in mind that the group velocity 

of sound of the reference beam can be determined from the 
relation7  
 

cg(s, 0) = es cg(s, 0) = c(s, 0) n(s) + v(s, 0). 

 

 
 

FIG. 2. 
 

Then from the geometry of Fig. 2 one can see that the 
expression in the denominator of the right–hand part of 
Eq. (19) is the modulus of group velocity of sound cg(s). 

Equation (19) can be presented in the following form: 
 

θ0 = ⌡⌠
0

s

 
ds

cg(s)
 . (20) 

 

Equation (20) makes clear the physical meaning of the 
first term in expansion of the eikonal function in the Taylor 
series. The value θ0 is equal to the time of sound 

propagation along the reference beam from the point (0, 0) 
to the point (s, 0). 

Write down the equation for the first power of q  
 

1
cos2β ρc

 θ′0
2 – 

tanβ
cosβ θ′0 θ2 – 

1
c2
0
 ⎣
⎡

⎦
⎤(θ′0 ν

s
1 + θ2 ν

q
0) – 2 θ′0 ν

s
0 
c1

c0
 + 

 

+ 
1

2 c2
0 ⎩⎪
⎨
⎪⎧ 

 
θ′0 ν

s
0 ⎣
⎡

⎦
⎤(θ′0 ν

s
1 + θ2 ν

q
0) – 2 θ′0 ν

s
0 

c1

c0
 + 

 

+ θ′0 ν
s
0 (θ′0 ν

s
1 + θ2 ν

q
0)

⎭⎪
⎬
⎪⎫ 

 
 = 

1
c2
0
 
c1

c0
 . (21) 

 
Take into account that β ∈ [–π, π] as well as β > 0 in 
counting anticlockwise from cs but in the opposite case 

β < 0. Consideration must be also taken of the fact that 
v0

q/c0 = – tanβ for an ascending beam, while  

v0
q/c0 = tanβ for descending one (see Figs. 2a and b, 

respectively). In this case, the sum of terms of Eq. (21) 
containing θ2 is equal to zero. Remaining expression (21) 

can be solved with respect to 1/ρc = 1/(ρ∗ cosβ), using 

the equality θ′0 = cosβ /(c0 + νs
0 cosβ). As a result, we 

obtain the following expression for the radius of sound 
beam curvature in an inhomogeneous moving medium 
 

1
ρ*(s) = 

∂c/∂q + ∂νs/∂q cosβ (s)
c(s, 0)  cosβ (s), (22) 

 

where 1/ρ*(s) = 1/ρ(s) – dβ/ds. All derivatives are taken 
on the reference beam at the point (s, 0). 

For v(s, q) = 0 Eq. (22) coincides with the 
corresponding expression for the radius of the beam 
curvature for a stationary medium.1,2,4 In this case the 
vectors es and eq are perpendicular, β(s) = 0, and 

1/ρ*(s) = 1/ρ(s). Note that the effect of motion of medium 
on the curvature radius can be expressed through 
∂vs/∂q cos β(s) which is the projection of the derivative of 
the velocity component vs(s, q) onto the normal to the 
phase front at the point (s, q = 0). The effect of vector 
v(s, 0) is expressed by the value of cosβ(s). The radius of 
beam curvature does not depend on the derivatives of 
component of the wind velocity along the tangent to the 
phase front vq(s, q). Using Eqs. (22) and (4) and 
parameters of medium c(s, q) and v(s, q) as the coordinate 
functions it becomes possible to construct the beam paths. 

To construct the beams in an inhomogeneous moving 
medium, the integral beam equation (9) is generally used. 
Compared to this method, the construction of beams based 
on the expression for the radius of beam curvature has the 
following advantages: 

1. Parameters c and v can be the functions of two 
variables (or even three ones in generalizing results of this 
paper for the case of three-dimensional space). The integral 
form of the beam equation takes place only for a stratified 
medium. 

2. The point of the beam bend (in using this method) 
is not a singular point of the beam path. Construction of 
the beam in its vicinity is carried out in the same way as in 
any point of the beam. Construction of the beam from the 
integral equation in the vicinity of the bend point is 
associated with the well-known difficulties. 

Long-time calculations are the disadvantage of this 
method. 

Above-mentioned well-known expression for the radius 
of the sound beam curvature in an inhomogeneous moving 
medium was obtained within the framework of linear 
aproximation with respect to v/c (Ref. 2). This 
approximation results in the errors in constructing the beam 
path, and expression for the curvature radius is rather 
awkward. 

Remark. The expression for the curvature radius was 
obtained in constructing the Gaussian beam in an 
inhomogeneous moving medium. To construct this beam, it 
is necessary to solve the equation for the second power of q 
for θ2. For θ2, it must be the Riccati equation as in the case 

of stationary medium.1,5,6 To find the amplitude of the 
Gaussian beam, it is necessary to study the transfer equation 
in the vicinity of reference beam, for an inhomogeneous 
moving medium8 as well. 
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